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Notes on Quantum Mechanics 

Lectures by Prof. Barton Zwiebach 

MIT OCW Physics 8.05 

 

Herein find notes from Barton Zwiebach’s lectures on Quantum Mechanics, Physics 8.05 in MIT 

OpenCourseware.  The full set of course notes is available on the MIT OCW web site, and 

they’re really complete and helpful.  These here are just the main new ideas I’ve learned and my 

extrapolations from them.  Zwiebach is an extraordinary teacher, and he’s clarified a whole 

bunch of concepts for me.   

 

 Lecture 1:  the Schrodinger equation 

 

At first, I thought Oh, no.  Here’s a rerun of the wavefunction.  My mind goes numb.   

 

This is different.  Zwiebach is so enthusiastic and so clear it actually begins to make sense.   

 

Start with the Schrodinger general equation.   

 

iℏ
∂Ψ(𝑥, 𝑡)

∂t
= (

−ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥, 𝑡))Ψ(𝑥, 𝑡) 

 

Note the symbols.  Capital Psi refers specifically to the general equation.  We’ll see later that 

little psi refers to the time-independent equation 

 

𝐻̂𝜓(𝑥) = 𝐸𝜓(𝑥) 

 

Those parentheses on the right of the general equation by the way.  That’s  𝐻̂ , the time operator 

Hamiltonian.  The total energy.   

 

Allowed potentials include, among the more common, square well (and related step functions), 

parabolic well, and delta function: 
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Develop the mathematical tools.  I’ll drop the function parameters, for clarity.  But keep in mind  

Ψ  means  Ψ(𝑥, 𝑡), while  𝜓  means  𝜓(𝑥).   

 

If  Ψ  represents a particle, we need maths to locate the particle in space and time.  Ψ  is 

complex.  It has to be, given that  i  on the l.h.s. of the general equation.  In order to locate 

particles in the real world we need real values.  Logical choice is the metric from complex math,   

the density function 

 

𝜌(𝑥, 𝑡) ≡ Ψ∗Ψ 

 

Consider position first.  Main idea, as usual for unitarity in probability, is that the particle exists, 

with probability one, so we must be able to find it somewhere.  In one dimension, the particle has 

to be somewhere along the real number line in the range minus infinity to plus infinity.  So  

 

∫ Ψ∗Ψ 𝑑𝑥
+∞

−∞

= 1 

 

Note that in the integral,  Ψ∗Ψ 𝑑𝑥  is the probability density of finding the particle somewhere in 

the interval  (𝑥, 𝑥 + 𝑑𝑥) .   

 



3 

 

All that is familiar.  Unitary probability.  Amplitude vs. probability.  New is better understanding 

of the density function.  I can sort of see it now; there it is on the Real line.   

 
Figure.  Probability density.  Absolute value of area, orange, between  a  and  b  gives 

probability of finding the particle in that interval.   

 

There are conditions at infinity.  Both Psi and   
𝜕Ψ 

𝜕𝑥
  have to go to zero at  ± ∞ .  Otherwise 

probability and momentum, among other things, blow up. 

 

Next is the continuity equation for the wavefunction.  Here’s a puzzlement.  It’s easy to visualize 

charge conservation, for example, in its continuity equation 

 

∇ ∙ 𝐽 +
𝜕𝜌

𝜕𝑡
= 0 

 

Any charge that escapes a region of space must have passed through the boundary of that region.  

In a one-dimensional system 

 

𝜕𝐽

𝜕𝑥
+

𝜕𝜌

𝜕𝑡
= 0 

 

Apply to the wavefunction.  Consider an interval  a  to  b  on the real line.  Any change in the 

density of the wavefunction in that interval must result from a density current.   

 

𝑑𝜌 = 𝐽(𝑎) − 𝐽(𝑏) 
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given the sign convention that  J  goes to the right.   

 

 
What is it that’s being conserved here?  Conservation of probability.  If amplitude translates in 

space – if the wavefunction is wiggling or a wave packet traveling – then the probability to find a 

particle must flow from one region to another.  Probability of finding it somewhere remains 1, so 

the probability density has to increase in the neighboring interval by the amount it decreases in 

this interval right here.   

 

Next up, the operator  𝐻̂ .  In general, operators change the wavefunction.  𝐻̂ is the time step 

operator.  If the wavefunction is time dependent, e.g. if the wave is oscillating, then  𝐻̂  updates 

the wavefunction to the next time step.   

 

Here’s the eye opener I mentioned at the beginning.  Take the general Schrodinger equation. 

 

iℏ
∂Ψ(𝑥, 𝑡)

∂t
= (

−ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥, 𝑡))Ψ(𝑥, 𝑡) 

 

Remove the time dependence, i.e. consider a wavefunction in a fixed potential and psi itself a 

function (remember we’re talking mathematical functions) depending only on position as the 

independent variable.  Rewrite. 

 

iℏ
∂

∂t
𝜓(𝑥) = (

−ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥))𝜓(𝑥) 
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Parentheses on the right represent total energy.  Relabel the differential operator on the left and, 

voila 

 

𝐻̂𝜓(𝑥) = 𝐸𝜓(𝑥) 

 

Note that  𝐻̂  is an operator and  E  is real.  So this is an eigenvector / eigenvalue expression.  We 

can solve the equation to find energy eigenvalues of the wavefunction, i.e. we can find the 

energy spectrum of a quantum system.  Solve the differential equation.  It is first order in time, 

so solution is pretty straightforward. 

 

iℏ
∂

∂t
𝜓(𝑥) = 𝐸𝜓(𝑥) 

 

𝜓(𝑥, 𝑡) = 𝑒
−𝑖𝐸𝑡

ℏ⁄  𝜓(𝑥) 

 

Neat!  We can calculate how the wavefunction evolves over time.  Draw the wavefunction.  

Cartoon animate it to watch it change over time.  Update the cartoon frames by that exponential 

in energy.   

 

On to those energy eigenstates.  The wavefunction will have particular energy solutions,  𝑏𝑛𝜓𝑛  

which are basis states in a vector space.  So a general wavefunction can be expressed as  

 

𝜓 = ∑𝑏𝑖𝜓𝑖

𝑛

𝑖=1

 

 

where  n  is the number of eigenstates, i.e. energy solutions, for that particular system.  The 

summation above is the spectrum of the wavefunction, e.g. the energy states of a hydrogen atom.  

Interesting physics occurs in degenerate states, when more than two eigenstates have the same 

energy.  More on that later. 

 

The eigenstates are orthonormal, as expected in linear algebra.  In mathspeak 

 

∫𝜓𝑚𝜓𝑛 𝑑𝑥 = 𝛿𝑚𝑛 

 

All this is practically useful for calculating the general wavefunction 
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Ψ(𝑥, 𝑡) = ∑𝑏𝑗𝑒
−𝑖𝐸𝑗𝑡

ℏ
⁄

 𝜓𝑗

𝑛

𝑗=1

 

 

and for calculating the coefficients of the eigenstates 

 

𝑏𝑚 = ∫𝑑𝑥 𝜓𝑚
∗𝜓 

 

Pay attention what’s going on here.  The summation above shows how to find the general 

wavefunction from the stationary function.  All the time dependence is in the energy exponential.  

All the evolution, all the dynamics is in that energy function.  The integral, finding coefficients, 

is all about orthogonality.  Dot product (this really is just a dot product, in integral form) picks 

out the term in question.  By orthogonality, all other products go to zero.   

 

Finally, expectation value.  Given a general time-independent operator,  𝐴̂ , what value can we 

expect on repeated / averaged measurements?  Here ‘tis. 

 

〈𝐴̂〉Ψ(𝑡) = ∫ Ψ∗𝐴̂Ψ 𝑑𝑥
+∞

−∞

 

 

Real value on the left.  Functions on the right.  So the integral is a functional, converting a 

function to a number.   
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Think about that a minute.  Suppose you’re trying to find a particle’s position, looking for the 

expectation value of the position operator.  Well, that argument in the integral is teasing out the 

likeliest position from the probability density, the product of those Psi’s.  The integral is finding 

average value over an infinite range where total probability is one, so there’s no need for the 

usual  1 (𝑏 − 𝑎)⁄   coefficient out front.  Particle is most likely to be found where the probability 

density is greatest.   

 

We’ll see later that we can interpret the integral as sum of the projections of the rotated state 

vector.  The operator transforms the wavefunction.  That’s what matrices = operators do.  Rotate 

or stretch vectors.  Assuming the wavefunction is normalized, then the dot product of the vector 

with its transformed self gives you the projection, how much of that wavefunction you can 

expect to find with that observation.  Projections on vectors.  Observables and how much you 

can expect to observe.   

 

 

Lecture 2:  bound states 

 

Prof. Zwiebach starts out with theorems about bound states, i.e. states that go to zero at  ±∞ . 

 

 They’re non-degenerate.  No duplications of states at the same energy. 

 They’re real. 

 And they’re either even or odd functions.   
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The lecture includes corollaries and strategies for the proofs.  See the course notes for details. 

 

 

Lecture 3:  position and momentum 

 

Position and momentum are observables, i.e. they have a physical instantiation that we can 

measure.  We can think of them also as different bases, different vector spaces describing a 

physical system.  Prof. Zwiebach introduces the essential linear algebra.   

 

You can switch from one basis to the other using Fourier transforms.   

 

𝜓(𝑥) = ∫ 𝑑𝑝 𝑒
𝑖𝑝𝑥

ℏ⁄  𝜓̃(𝑝)
∞

−∞

 

 

and   

 

𝜓̃(𝑝) = ∫ 𝑑𝑥 𝑒
−𝑖𝑝𝑥

ℏ⁄  𝜓(𝑥)
∞

−∞

 

 

 

Note that the momentum operator acting on the  x-basis wavefunction gives the associated 

eigenvalue relations, and vice versa for the  p-basis wavefunction:   

∫ 𝑑𝑝 𝑒
𝑖𝑝𝑥

ℏ⁄  𝜓̃(𝑝)
∞

−∞

≅ ∑𝑒
𝑖𝑝𝑗𝑥

ℏ
⁄

 𝜓̃(𝑝𝑗)

𝑁

𝑗=1
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so 

𝑝̂𝜓(𝑥) = −𝑖ℏ
𝜕

𝜕𝑥
𝜓(𝑥) = −𝑖ℏ

𝜕

𝜕𝑥
∑𝑒

𝑖𝑝𝑗𝑥
ℏ

⁄
 𝜓̃(𝑝𝑗)

𝑁

𝑗=1

= 𝑝𝜓(𝑥) 

as expected.  It’s all in that exponential.   

 

One of the neat things I learned in this lecture is how to think of the wavefunction as a vector.  

Draw a one-dimensional  𝜓(𝑥) .  Parse out the function over intervals  𝜖 .  The wavefunction has 

a value at each interval.  Voila!  A vector! 

 

𝜓(𝑥) =

[
 
 
 
 
𝜓(0)

𝜓(𝜖)

𝜓(2𝜖)

𝜓(3𝜖)
⋮ ]

 
 
 
 

 

 
 

And the position operator is a matrix.  Given 

 

𝑥̂𝜓(𝑥) = 𝑥𝜓(𝑥) 

 

Translate to linear algebra 
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[

0 0
0 𝜖

0 0
0 0

0 0
⋮ 0

2𝜖 …
0 3𝜖

]

[
 
 
 
 
𝜓(0)

𝜓(𝜖)

𝜓(2𝜖)

𝜓(3𝜖)
⋮ ]

 
 
 
 

= 𝑥𝜓(𝑥) 

 

Makes sense!  And now I appreciate why the wavefunctions sit in such a huge (Hilbert) vector 

space! 

 

The rest of the lecture introduces the Stern-Gerlach experiment.  Key is understanding magnetic 

moment and how a divergent external B field can separate spin-up from spin-down.   

 

 
Figure.  Stern-Gerlach apparatus.  Collimated beam of ionized silver atoms traverses gradient of 

magnetic field, which separates spin up from spin down.  Credit Prof. Barton Zwiebach, MIT 

OCW Physics 8.05.    
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Figure.  Contrary to prediction of classical electromagnetism, electrons are only detected in one 

or the other of two states.  Credit Prof. Barton Zwiebach, MIT OCW Physics 8.05.    

 

 

 

Figure:  Diagram of Stern-Gerlach results.  Credit Prof. Barton Zwiebach, MIT OCW Physics 8.05.    
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Figure:  Series of Stern-Gerlach apparatus at different orientations.  This is the heart of 

quantum mechanics!  Credit Prof. Barton Zwiebach, MIT OCW Physics 8.05.    

 

See Zwiebach’s Lecture 3 for thorough discussion of spin one-half and the spin operators.  I 

thought I had recorded those notes, but they’ve disappeared somewhere.   

 

Lectures 4–7:  Linear algebra 

 

I learned a whole bunch here.  Zwiebach was away for a couple lectures, so Aram Harrow and 

William Detbold filled in.  They zoomed through all the essentials.  What a great review! 

 

They based their presentation on Axler’s text, Linear Algebra Done Right.  I believe that title.  

Here are the main take-aways and what now makes sense that didn’t before (or that I just 

assumed I understood but really didn’t). 

 

It’s all about vector spaces and their properties.  Components of vector spaces are fields and 

vectors, properties collected in CANNDII.  Fields for our practical purposes are the reals and 

complex numbers.  Vectors are of many sorts:  polynomials, lists, etc.   Addition of vectors 

commutes.  Vector addition is associative.  There is a null (zero) vector for multiplication.  There 

is a negative (inverse) for addition.  Multiplication is distributive.  And identities exist for both 

addition and multiplication.   
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Hilbert space is a complex vector space that includes an inner product.  Inner product is an 

operation that gives a field value when two vectors are multiplied; best example is the dot 

product.  All physics occurs in Hilbert space.  I think the physical implication here is that 

physical space requires a measure of distance, and that’s given by the inner product.   

 

A subspace  𝑈  of vector space  𝑉  contains the field and vectors  𝑢⃗   such that  𝑈 ⊂ 𝑉  and  𝑈  

itself is a vector space by all the definitions.  Now it must be the case for some combination of  

𝑈′𝑠  that   

 

𝑈1 ⨁  𝑈2  ⨁ .  .  .  𝑈𝑛 = 𝑉 

 

where the  ⨁  mean the ‘direct sum.’  We’re adding subspaces to build the larger vector space.     

 

Now consider.  Suppose each  𝑈  comprises linearly independent basis vectors that span  𝑈 .  

Then the direct sum spans  𝑉.  The direct sum forms a basis for  𝑉.  That’s the definition of a 

basis:  a set of linearly independent vectors that spans the vector space.   

 

Operators are maps that transform vectors in a vector space  V  to other vectors in that same 

vector space.  Operators can be represented by matrices, but matrices are more narrowly defined 

as operators in a given basis.  The same matrix produces different results in different bases.  

Operators are functions and obey the distributive laws and linearity, but they do not necessarily 

commute.  The commutation part is interesting; the commutator is a kind of eigenvalue relation.  

Suppose operator  𝑅 = 𝑥 and operator  𝑆 = 𝜕
𝜕𝑥⁄  .  Then, acting on the polynomial  𝑝 = 𝑥𝑛   

 

[𝑆, 𝑅]𝑝 = 𝐼𝑝 

 

𝐼  is like an eigenvalue here.  Just like  𝑖ℏ  acts like an eigval in  [𝑥, 𝑝] = 𝑖ℏ 

 

The dimension of a vector space   

 

dim𝑉 = dim𝑛𝑢𝑙𝑙(𝑇) + dim 𝑟𝑎𝑛𝑔𝑒(𝑇) 

 

This is the Fundamental Theorem of vector spaces.  𝑛𝑢𝑙𝑙(𝑇)  are all those vectors that the 

operator  T  takes to zero (zero vector).  𝑟𝑎𝑛𝑔𝑒(𝑇)  are all the (surjective) transformations  𝑇𝑣  

otherwise filling the vector space  𝑉 .  Injective means an operator maps one-to-one in the vector 

space.  Surjective means the map fills the whole vector space.   

 

Eigenvectors and eigenvalues of an operator are in the subspace of a vector space such that the 

operator acting on an eigenvector returns another vector in that subspace. 
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𝑇𝑢⃗ = 𝜆𝑢⃗  

 

I’ve sure seen that before, but it makes more sense in the context of the spaces.  Axler rules! 

 

Which leads to another useful theorem and perspective on the spaces.  The eigen-subspace plus 

the subspace orthogonal to the eigens fills the next higher dimension.   

 

𝑉 = 𝑈 + 𝑈⊥ 

 

You can see that with the 2d  𝑥 − 𝑦  plane, spanned by  𝑒𝑥 and 𝑒𝑦 .  Add the perpendicular  𝑒𝑧  

and you’ve got  ℝ3 . 

 

Maybe the biggest ‘aha’ of these lectures was Prof. Zwiebach’s explanation of Dirac’s notation.  

It derives from the inner product in complex space.  The ket is a good ol’ regular vector.  

(Remember, whether a vector space is real or complex depends on the field, not the vectors.)  

The bra on the other hand (and this was the ‘aha’) is a map.  It maps the ket to a complex value 

in the field.  (Which is what happens with an inner product.)   

 

The bra’s compose an injective dual space to the kets.  i.e. the bra is unique to the dual ket.  

Operations apply the rules for complex numbers. 

 

⟨𝑎|𝑏⟩ = ⟨𝑏|𝑎⟩∗ 

 

⟨𝑎|𝛽1𝑏1 + 𝛽2𝑏2⟩ = ⟨𝛽1𝑏1 + 𝛽2𝑏2|𝑎⟩∗ = ⟨𝛽1𝑏1|𝑎⟩∗ + ⟨𝛽2𝑏2|𝑎⟩∗ = 𝛽1
∗⟨𝑎|𝑏1⟩ + 𝛽2

∗⟨𝑎|𝑏2⟩ 

 

I skipped a step at the last, swapping bra and ket again.  That’s why the complex star disappears 

on the last brackets.  But you get the idea.   

 

Of course, you can represent the bra’s as row vectors; inner product then just becomes row times 

column vector multiplication.  Handy! 

 

References are in the 8.05 notes, all you need to know, and of course in Axler.  What great 

resources those are.   

 

Detbold and Harrow look like kids, but they are on the frontiers themselves.  Harrow works in 

quantum computers and information theory.  He’s a student of Chuang’s.  Detbold runs 

numerical simulations of strong interactions, including conditions at the cores of neutron stars.  

Neat stuff!   
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Lecture 8:  bra’s and ket’s and operators 

 

Now we get to the really powerful payoffs.  Look at what the bra and ket logic can do.   

 

Take for example the definition of the dagger operator and its operations.  A couple useful 

theorems for operators pop out.   

 

⟨𝑇†𝑢|𝑣⟩ = ⟨𝑢|𝑇𝑣⟩ 

 

If we’re in a real vector space, then  𝑇† = (𝑇∗)′ .  That’s one of the theorems.  And you can use 

it both ways – find the  T’s  if you’re in a real vector space or prove you’re working with a real 

vector space if you know the  T’s.  Also note – just formalism – that  ⟨𝑢|𝑇𝑣⟩ = ⟨𝑢|𝑇|𝑣⟩  and, 

most important for practical purposes, we can treat the  T’s  as matrices.   

 

The other handy theorem: 

 

⟨𝑇†𝑢|𝑣⟩ = ⟨𝑣|𝑇𝑢⟩∗ 

 

Proofs for all these rest on index manipulation.  I had it all clear in my head, but then it went 

fuzzy.   

 

Anyway, them’s important operators, the  T’s.  I think they’ll have a lot to do with projections 

and measurement, expectation values and such truck.   

 

 

Lecture 9:  bra’s and kets (cont’d) 

 

Ha!  Told you so.  That there expression  ⟨𝑢|𝑇𝑣⟩ =  ⟨𝑢|𝑇|𝑣⟩  is an expectation value!  Zwiebach 

let it slip in passing. 

 

Main arguments in this lecture are extensions of the definition of a Hermitian operator.   𝑇†  is 

the adjoint, as defined by the bracket relations above, while  𝑇† = 𝑇  defines Hermitian adjoint.  

And for Hermitian operators all kinds of wonderful properties follow.  For example, the 

eigenvalues of Hermitian operators must be real.  So they can describe measurements.  And the 

eigenvectors of different eigenvalues must be orthogonal.  Proofs are pretty slick. 

 

Given  T  Hermitian and   𝑇𝑣 = 𝜆𝑣  eigens.  Start with bracket  ⟨𝑣|𝑇𝑣⟩  and work both directions. 

 

𝜆⟨𝑣|𝑣⟩ = ⟨𝑣|𝜆𝑣⟩ = ⟨𝑣|𝑇𝑣⟩ = ⟨𝑇†𝑣|𝑣⟩ = ⟨𝑇𝑣|𝑣⟩ = ⟨𝜆𝑣|𝑣⟩ = 𝜆∗⟨𝑣|𝑣⟩ 
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Expressions on the two ends are equal, so the lambdas must be real for  𝜆 = 𝜆∗ .  Done!  All that 

work finding  𝑇† pays off! 

 

What about orthogonality of eigenvectors?  Here ‘tis.  Same kind of math manipulation.   

 

Given two different eigenvalues on the same Hermitian operator:   

 

𝜆1⟨𝑣1|𝑣2⟩ = ⟨𝜆1𝑣1|𝑣2⟩ = ⟨𝑇𝑣1|𝑣2⟩ = ⟨𝑣1|𝑇𝑣2⟩ = ⟨𝑣1|𝜆2𝑣2⟩ = 𝜆2⟨𝑣1|𝑣2⟩ 

 

So  (𝜆1 − 𝜆2)⟨𝑣1|𝑣2⟩ = 0 

 

But we’ve stipulated the eigenvalues are different, so  ⟨𝑣1|𝑣2⟩ = 0.  The eigenvectors must be 

orthogonal! 

 

Onward to unitary operators.  By definition a unitary operator is Hermitian and preserves the 

norm of any vector in the vector space. 

 

|𝑈𝑣| = |𝑣| 

 

From this, since  U  is Hermitian, 

 

|𝑈†𝑈𝑣| = |𝑈𝑣| = |𝑣| 

 

So  𝑈†𝑈 = 𝐼 .  The identity.  We’ll be using that. 

 

On to bra’s.  Now here’s new.  We’ve been used to linear algebra  

 

|𝑎𝑣⟩ = 𝑎|𝑣⟩ 

 

Fine and dandy.  Linearity on a vector space.  But look what happens when we start talking about 

position and momentum, non-determinate variables.  That is, position, a particle state, could be 

anywhere in an infinite dimensional Hilbert space.  Proper interpretation of the bra, then, is that 

it represents the state of a particle, not the vector position of the particle.  |𝑥⟩  represents a 

particle at position  x .  It is the state of the particle being at  x .  So  

 

|𝑎𝑥⟩ ≠ 𝑎|𝑥⟩ 

 

Left side is a particle in the state of being at position  ax .  Right side a  is the amplitude of a 

particle in the state of being at position  x .  There’s a difference!  Similarly  |𝑥 ⟩   is the state in 
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which a particle is sitting at 3-d vector position  𝑥  .  The bra itself is not the vector coordinate 

position.  Subtle, eh?  But make sense when you think about it. 

 

 

Lecture 10:  Uncertainty 

 

Here’s the absolute coolest thing ever.  Pythagoras rules!   

 

Question is:  how do you figure the uncertainty in an operator?  Suppose you’re trying to find the 

value of an observable.  Operate on the wavefunction.  How certain are you of the result?   

 

Here’s how you find the uncertainty of a unitary operator  𝐴̂  acting on a normalized 

wavefunction  𝜓 . 

 
A  rotates  |𝜓⟩  .  First calculate the projection of  𝐴|𝜓⟩  onto the eigenvector  |𝜓⟩ .  That will 

give the amplitude to find the transformed vector in that eigenstate.   

 

Projection.  It’s an operator.  It casts the shadow of a state vector onto a basis vector and thereby 

represents the component of that basis in that particular state.  It’s a simple calculation.  Using 

the  |𝜓⟩  basis as an example, 

 

𝑃|𝜓⟩ = |𝜓⟩⟨𝜓| 

 

That’s it!  Note that that the projection is a matrix, so a likely operator sure enough.  And look 

here.  Projection of   𝐴|𝜓⟩  onto the basis gives the expectation value in that basis.   
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|𝜓⟩⟨𝜓|𝐴|𝜓⟩ = |𝜓⟩〈𝐴〉 = 〈𝐴〉|𝜓⟩ 

 

All that’s legal because the expectation value  〈𝐴〉  is a real number (because the operator is 

Hermitian).   

 

Good enough.  Expectation value gives the amplitude of the transformed vector on that basis.   

 

And, methinks, that there explains a lot!  Look back at the Dirac definition of the wavefunction.   

 

𝜓 = ∫𝑑𝑥 |𝑥⟩⟨𝑥|𝜓⟩ 

 

That’s the projection of psi onto the x-basis.  Sum over all  x  and you’ve got the state vector = 

the wavefunction!  Remember,  x  is a non-determinable basis.  It’s the Hilbert space of all  x .  

Each position itself serves as a basis.  So the definition says the wavefunction is the sum of all 

the projections of the state vector onto all the bases.  Same idea as a vector in three-space is the 

sum of its  𝑥, 𝑦, and 𝑧  components.  Makes sense!   

 

Projections onto basis states are components.  Keep that in mind.   

 

But back to the uncertainty.  Almost done.  Look at the triangle.  Because all the vectors are unit 

vectors, projection is cosine of the angle between  𝐴|𝜓⟩  and  |𝜓⟩ .  Previous of Zwiebach’s 

calculations found that the uncertainty   

 

∆𝐴|𝜓⟩ = 𝐴|𝜓⟩ − 〈𝐴〉𝐼|𝜓⟩ 

 

You have to have the  I  in there because we’re dealing with matrix operators.  But take a look at 

the figure.  ∆𝐴|𝜓⟩  is the sine leg of that Pythagorean triangle.  That’s the uncertainty, expressed 

as a vector.  And Pythagoras immediately gives us the most useful relation for calculating 

uncertainties.   

 

(∆𝐴)2 ≥ 〈𝐴2〉 − 〈𝐴〉2 

 

It’s all from the triangle.  But the  〈𝐴2〉  isn’t obvious.  Here’s the derivation.  Remember the 

state vector is imaginary.  So  

 

(𝐴|𝜓⟩)2 = (⟨𝜓|𝐴)(𝐴|𝜓⟩) = ⟨𝜓|𝐴2|𝜓⟩ = 〈𝐴2〉 
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Pretty neat!  There’s a whole lot more algebra in the formal proof, but it’s all right there in that 

vector diagram.  And a whole lot easier to remember.   

 

Note also the relation to statistics.  That ‘mean of the square minus the square of the mean’ is the 

statistical variance.  Variance.  How widely dispersed are the elements in the sample.  Applied to 

operators and states, I suppose it could represent the variation you’d expect if you performed a 

whole series of experiments on particles all prepared in the same initial state.   

 

 

Lecture 10:  the uncertainty principle 

 

Variance and uncertainty, related by experiment.  The uncertainty in repeatable experiments is 

the variance around the mean, the expectation value.  Measure spin along the x-axis of zillions of 

electrons prepared with spin  |𝑧 +⟩ ≡ |+⟩ = |↑⟩  .  We want to know the variance of our 

experimental results, our observations, our observable.  What is the uncertainty in  𝑠𝑥 ?   

 

Think about that again.  Prepare spin up along  𝑧 .  Measure along  𝑥 with good ol’ Stern-

Gerlach.  Electron spin angular momentum is  ℏ 2⁄  .  Expectation value is zero (because it’s 

equally likely we’ll measure  |𝑥 +⟩ or |𝑥 −⟩.  We want to know how much variance there will be 

around the expectation value.  Well, duh.  Spin is quantized.  There are only two possible 

outcomes to our measurements,  +ℏ
2⁄   or  − ℏ

2⁄  .  Variance is   ℏ 2⁄  .  Uncertainty of the 

outcome is  ℏ 2⁄  .  Uncertainty in the observable  𝑠𝑥 is  ℏ 2⁄  .  Done.   

 

Let’s see if the math works.  We want to find the variance in  𝑠𝑥  given state  |𝑧 +⟩ .  Use the 

formula. 

 

(∆𝑠𝑥)
2 ≥ 〈𝑠𝑥

2〉 − 〈𝑠𝑥〉
2 

 

Convert to matrix representation to calculate those expectation values.   

 

〈𝑠𝑥〉 = ⟨+|𝑠𝑥|+⟩ = [1 0] 
ℏ

2
 [
0 1
1 0

] [
1
0
] = 0 

 

〈𝑠𝑥
2〉 = ⟨+|𝑠𝑥

2|+⟩ = [1 0] (
ℏ

2
)
2

[
1 0
0 1

] [
1
0
] = (

ℏ

2
)

2

 

 

Put it all together, 
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(∆𝑠𝑥)
2 ≥ (

ℏ

2
)
2

 

 

∆𝑠𝑥 ≥ 
ℏ

2
 

 

As expected!  The logic works.  Variance = uncertainty lower bound as expected from the 

quantization of spin. 

 

Okay.  How about those famous uncertainty principles?  ∆𝑥∆𝑝 ≥
ℏ

2
   and  ∆𝐸∆𝑡 ≥

ℏ

2
  ?  Where 

did they come from?  How can we understand them?  And how can we figure out the minimum 

of uncertainties, the minimum variance in our experimental results?   

 

Jumping right to the general formula,  

 

∆𝐴∆𝐵 ≥  (⟨𝜓| 
1

2𝑖
[𝐴, 𝐵] |𝜓⟩) 

 

where  A  and  B  are Hermitian operators.  Check that out with the known 

 

∆𝑥∆𝑝 ≥  (⟨𝜓| 
1

2𝑖
[𝑥, 𝑝] |𝜓⟩) = (⟨𝜓| 

1

2𝑖
𝑖ℏ |𝜓⟩) =

ℏ

2
 

 

As expected.  Note that the uncertainty is real.  Now where did that general formula come from?  

Back to basics.  We need to figure out that commutator in the expectation value.  Begin with the 

Schwarz inequality.  Product of norms of the two sides of a triangle is always greater than or 

equal to the product of the projection of a vector and its projector.   
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Apply that to our geometric interpretation of the uncertainty.   

 
∆𝐴|𝜓⟩ = 𝐴|𝜓⟩ − 〈𝐴〉𝐼|𝜓⟩ 

 

Add a second uncertainty to the mix.   
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∆𝐵|𝜓⟩ = 𝐵|𝜓⟩ − 〈𝐵〉𝐼|𝜓⟩ 

 

Look at the geometry.   

 

 
The operators  A  and  B  are working in two different bases.  They operate on the same state,  

|𝜓⟩ , but in different basis states.  Position and momentum, say.  Imagine the state  𝐵|𝜓⟩  is 

projecting out of the plane of the paper in that different basis, rotating its uncertainty  ∆𝐵|𝜓⟩  

along with it.  We’re interested in calculating  (∆𝐴)(∆𝐵) .  We’ll use Schwarz.  In preview, 

though, we’ll be interested the projection of  ∆𝐴 onto ∆𝐵 .  That tells all.   

 

We’re out to prove   

 

∆𝐴∆𝐵 ≥  |⟨𝜓| 
1

2𝑖
[𝐴, 𝐵] |𝜓⟩| 

 

Convert to the Schwarz form   

 

∆𝐴2∆𝐵2 ≥ (⟨𝜓| 
1

2𝑖
[𝐴, 𝐵] |𝜓⟩)

2
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Let   

 

𝐴|𝜓⟩ − 〈𝐴〉𝐼|𝜓⟩ ≡ 𝑓|𝜓⟩ 

and  

 

𝐵|𝜓⟩ − 〈𝐵〉𝐼|𝜓⟩ ≡ 𝑔|𝜓⟩ 

 

Schwarz gives 

 

⟨𝑓|𝑓⟩⟨𝑔|𝑔⟩ ≥ (⟨𝑓|𝑔⟩)2 

 

We focus on that rhs of the uncertainty inequality.  First some basic, straight off the Argand 

plane complex geometry. 

 

(⟨𝑓|𝑔⟩)2 = 𝐼𝑚(⟨𝑓|𝑔⟩)2 + 𝑅𝑒(⟨𝑓|𝑔⟩)2 

 

Left side is complex, imaginary and real parts.  Pythagoras separates them.  Let’s see where that 

leads. 

 

𝐼𝑚(⟨𝑓|𝑔⟩)2 =
1

2𝑖
(⟨𝑓|𝑔⟩ − ⟨𝑔|𝑓⟩) 

 

That’s just another manipulation of the complex.  
1

2𝑖
(𝑎 + 𝑏𝑖) − (𝑎 − 𝑏𝑖) = 𝑏 , the imaginary 

component of the complex  𝑧 . 

 

Similarly, 

 

𝑅𝑒(⟨𝑓|𝑔⟩)2 =
1

2
(⟨𝑓|𝑔⟩ + ⟨𝑔|𝑓⟩) 

 

Now it turns out the real component usually doesn’t affect the Schwarz inequality.  What matters 

is the imaginary component.  That’s because the real term is always positive and always, well, 

real.  It’s that differential in the imaginary component that’s tracking uncertainty.  It’s the 

imaginary component that takes us out of the real plane and into the variance due to 

measurement in different bases.  A measurement with meter sticks vs. a measurement with 

stopwatches, say.  What’s the variance in outcome when you have to consider both the error in 

your meter stick and the error in the stopwatch.  Measure a meter a bit too long and a time too 

short, then measure a meter a bit too short and a time too long and you’ve multiplied your 

variance.  That’s what’s included out there in the angle theta between the uncertainty vectors.  At 
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least I think so.  Anyway, we’ll take Zwiebach at his word and focus on that imaginary 

component.  Time to plug the operators back in.   

 

𝐼𝑚(⟨𝑓|𝑔⟩)2 =
1

2𝑖
(⟨𝜓| (𝐴 − 〈𝐴〉)(𝐵 − 〈𝐵〉)|𝜓⟩) − (⟨𝜓| (𝐵 − 〈𝐵〉)(𝐴 − 〈𝐴〉)|𝜓⟩) 

 

Do the algebra.   

 

1

2𝑖
(⟨𝜓| (𝐴 − 〈𝐴〉)(𝐵 − 〈𝐵〉)|𝜓⟩) − (⟨𝜓| (𝐵 − 〈𝐵〉)(𝐴 − 〈𝐴〉)|𝜓⟩) 

 

=
1

2𝑖
(⟨𝜓| (𝐴𝐵 − 𝐴〈𝐵〉 − 〈𝐴〉𝐵 + 〈𝐴〉〈𝐵〉)|𝜓⟩) − (⟨𝜓| (𝐵𝐴 − 𝐵〈𝐴〉 − 〈𝐵〉𝐴 + 〈𝐵〉〈𝐴〉)|𝜓⟩) 

 

Good.  Now take a look.  Those are expectation values with mixed terms, scalars (other 

expectation values), and operators for which the bracketing psi’s will calculate expectation 

values.  For example pull out that first  𝐴〈𝐵〉  term.  We’re working in linear vector spaces after 

all.  We can separate terms.   

 

⟨𝜓| (−𝐴〈𝐵〉)|𝜓⟩ = −〈𝐵〉∗⟨𝜓| (𝐴)|𝜓⟩ = −〈𝐵〉∗〈𝐴〉 

 

It’s the product of two expectation values, itself a number. 

 

If you simplify all those manipulations inside the original brackets, 

 

𝐼𝑚(⟨𝑓|𝑔⟩)2 =
1

2𝑖
(⟨𝜓|𝐴𝐵 − 〈𝐴〉〈𝐵〉 |𝜓⟩) − (⟨𝜓|𝐵𝐴 − 〈𝐵〉〈𝐴〉 |𝜓⟩) 

 

By the rules, collect the terms in the brackets.   

 

𝐼𝑚(⟨𝑓|𝑔⟩)2 =
1

2𝑖
(⟨𝜓|𝐴𝐵 − 〈𝐴〉〈𝐵〉 − 𝐵𝐴 + 〈𝐵〉〈𝐴〉 |𝜓⟩) =

1

2𝑖
(⟨𝜓| [𝐴, 𝐵] |𝜓⟩) 

 

As promised!  Pretty slick!  Look how that commutator is telling us the uncertainty.  It’s the 

variance between measurement in different bases.   

 

Next up:  derivation of the Energy-time uncertainty relation.  Now we’ve got the general 

formula; all we have to do is plug in likely operators.   

 

Start with the time-dependent SE and a dummy operator,  Q , that is time independent.   
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𝑖ℏ
𝜕

𝜕𝑡
|𝜓⟩ = 𝐻|𝜓⟩ 

 

Bracket the commutator of  H  with  Q .   

 

⟨𝜓| [𝐻, 𝑄] |𝜓⟩ = ⟨𝜓| 𝐻𝑄 − 𝑄𝐻 |𝜓⟩ = ⟨𝜓| 𝐻𝑄 |𝜓⟩ −  ⟨𝜓| 𝑄𝐻 |𝜓⟩ 

 

=  ⟨𝐻𝜓| 𝑄 |𝜓⟩ −  ⟨𝜓| 𝑄 |𝐻𝜓⟩ = −𝑖ℏ
𝜕

𝜕𝑡
 ⟨𝜓| 𝑄 |𝜓⟩ − 𝑖ℏ

𝜕

𝜕𝑡
 ⟨𝜓| 𝑄 |𝜓⟩ = −2𝑖ℏ

𝜕

𝜕𝑡
〈𝑄〉 

 

Let’s check that.  Work backward.   

 

𝜕

𝜕𝑡
〈𝑄〉 =

𝜕

𝜕𝑡
 ⟨𝜓| 𝑄 |𝜓⟩ =  ⟨

𝜕

𝜕𝑡
𝜓| 𝑄𝜓⟩ +  ⟨𝜓| 𝑄

𝜕

𝜕𝑡
𝜓⟩ =

1

𝑖ℏ
( ⟨𝐻𝜓| 𝑄 |𝜓⟩ −  ⟨𝜓| 𝑄 |𝐻𝜓⟩) 

 

=
1

𝑖ℏ
( ⟨𝜓| 𝐻𝑄 |𝜓⟩ −  ⟨𝜓| 𝑄𝐻 |𝜓⟩) =

1

𝑖ℏ
( ⟨𝜓| 𝐻𝑄 − 𝑄𝐻 |𝜓⟩) 

 

=
1

𝑖ℏ
 ⟨𝜓| [𝐻, 𝑄] |𝜓⟩ 

 

Looks promising, but I’ve lost some factors in there somewhere. 

 

Note that 〈𝑄〉  is time dependent.  Plug back in to Schwarz.   

 

(∆𝐻)2(∆𝑄)2 ≥ (⟨𝜓| 
1

2𝑖
[𝐻, 𝑄] |𝜓⟩)

2

= (−ℏ
𝜕

𝜕𝑡
〈𝑄〉)

2

 

 

→ ∆𝐻∆𝑄 = |−ℏ
𝜕

𝜕𝑡
〈𝑄〉| 

 

Now identify a time interval   

 

∆𝑡 =
∆𝑄

𝜕〈𝑄〉
𝜕𝑡

 

 

That’s the time interval required for the operator  𝑄 to change by amount  ∆𝑄 . 

 

Done!  Well, factor of two or so.   ∆𝐻∆𝑡 = ℏ .  Identify  ∆𝐻  with its eigenvalue and we’ve got 

it. 
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∆𝐸∆𝑡 = ℏ 

 

Good enough.   

 

 

Lecture 11:  Uncertainty and the spectral theorem 

 

Professor Z. checks out the position-momentum uncertainty with an example, 

 

𝐻 =
𝑝2

2𝑚
+ 𝑥4 

 

First convert to operators, then carry on.  Gives pretty good prediction for the experimental 

values.  (Not sure where he gets those experimental data.)  See his lecture notes. 

 

On to diagonalization.  If an operator has a complete set of eigenvectors on a vector space, then 

you can diagonalize the operator, eigenvalues along the diagonal with corresponding 

eigenvectors.  Better yet, you can find an orthonormal diagonalization:  eigenvalues along the 

diagonal and orthonormal eigenvectors.   

 

Here are the necessary transformations.  Given  

 

𝑇𝑣 = 𝜆𝑣 

 

with operator  𝑇 ∈ ℒ(𝑉)  and  𝑣 = {𝑣𝑖}  a set of basis vectors on  𝑉 .  Then there exists an 

operator  𝐴  such that  𝐴𝑣𝑖 = 𝑢𝑖 ,  𝑢 = {𝑣𝑖}  another set of basis vectors on  𝑉  and  

 

𝑇𝑢 = 𝜆𝑢 

 

with  𝑇  diagonal.  That’s possible because you can choose  𝑣  orthonormal so that  

 

𝑢𝑖 = 𝐴𝑖𝑘𝑣𝑘 = [

𝐴1𝑘

𝐴2𝑘

⋮
𝐴𝑛𝑘

] 

 

because   

 

𝑣1 = [

1
0
⋮
0

]          𝑣2 = [

0
1
⋮
0

]     𝑒𝑡𝑐. 
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Better yet, you start with an orthonormal  𝑣  and choose a unitary operator  𝐴  such that  𝑢  also 

is an orthonormal basis.  That makes  𝑇 as simple as possible:  a diagonal matrix, all the 

eigenvalues along the diagonal, with orthonormal eigenvectors.   

 

How find that  𝑇 ?  Assume  𝑣  orthonormal and  𝐴  unitary as per above. 

 

𝑇𝑣 = 𝜆𝑣 →  𝑇𝐴𝑣 = 𝜆𝐴𝑣 →  𝐴′𝑇𝐴𝑣 = 𝐴′𝜆𝐴𝑣 = 𝜆𝑣 

 

𝐴′𝑇𝑢 = 𝜆𝑣 

 

There’s your diagonalized matrix,  𝐴′𝑇 .   

 

I’ve skipped over some subscripts.  Those lambda’s, of course, are different in the different 

bases.  But onward.   

 

Main idea in this lecture, and one of the key ideas for all Heisenberg-Dirac QM is the spectral 

theorem.  If an operator  𝑇  in vector space  𝑉  has eigenvectors that form an orthonormal basis in  

𝑉, then  𝑇 must be a normal operator.  By definition a normal operator has the property that   

 

[𝑇†, 𝑇] = 0 

 

Normal operators include Hermitian and unitary operators.  They’re the ones we need for 

quantum mechanics.   

 

The rest of the lecture involves proofs for the spectral theorem and various properties of 

diagonalization.  I guess the practical takeaway for all this is if you can diagonalize an operator, 

then you immediately see it’s spectrum;  all the eigenvalues sit there along the diagonal.  And all 

the eigenvectors are just  1’s  in the proper slot on the unit vectors.   

 

The other idea here is figuring out under what conditions you can simultaneously diagonalize 

two operators.  Key requirement is that the two operators must have bases of the same dimension 

in the same vector space.  Then you can relate one to the other by converting the bases.  

Diagonalize one and you know how to diagonalize the other by change of basis.   

 

Complications enter when you have a degenerate operator.  Same energy, say, for several 

different eigenstates.  You want to be able to find out what makes those states different if it’s not 

the energy.  That’s the whole point of the simultaneous diagonalization of different operators.  

Represent one operator in terms of the other and you figure out what distinguishes them.   
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The matrix math is interesting.  Turns out that the diagonalization of a degenerate operator gives 

you a block diagonal matrix.  Each block represents the subspace of eigen’s with the same 

energy.  That’s the conceptually important point.  Degenerate eigenstates mean you have several 

vectors (states) composing a vector subspace all with the same energy.  Each energy is a 

subspace of the larger vector space.  Add up all those subspaces, a direct sum, and you get the 

entire vector space.  Anyway, once you’ve figured out the blocks you can diagonalize the 

individual blocks with a new set of matrix transformations inherent to that subspace.  There’s a 

whole lot of matrix calculations going on, but do-able.   

 

 

Lecture 12:  Harmonic oscillator and quantum dynamics 

 

Harmonic oscillator.  Again?  For heaven’s sake, why?   

 

Well, we’ve got new tools and we can use them to pry further under the hood.  Normal operators 

and the spectral theorem provide new understanding.  Nuts and bolts.  We get to see more of the 

blueprints, how quantum mechanics is put together.   

 

Start with the usual 

 

𝐻 =
𝑝̂2

2𝑚
+

1

2
𝑚𝜔2𝑥̂2 

 

Factor.  Purpose here is to produce a form  𝐻 ~ 𝑉†𝑉  so we can apply the spectral theorem.   

 

𝐻 =
1

2
𝑚𝜔2 (𝑥̂ −

𝑝̂

𝑚𝜔
) (𝑥̂ +

𝑝̂

𝑚𝜔
) +

ℏ

2
𝜔 

 

Last term there, remember, results from the cross terms between factors and their commutation 

relations.   

 

Okay.  So what?  Well, those parentheses are normal operators!  Let 

 

(𝑥̂ −
𝑝̂

𝑚𝜔
) = 𝑉†  and  (𝑥̂ +

𝑝̂

𝑚𝜔
) = 𝑉 

 

Normal operators.  Their product gives a Hermitian operator,  𝐻.  Their (orthonormal) 

eigenvectors provide a basis for their complex (Hilbert) vector space, so they are diagonalizable 

and their eigenvalues sit on the diagonals.  We just have to read off the diagonals to find the 

spectrum of the harmonic oscillator.  Can’t get any spiffier than that! 
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On to the nit and grit and an interesting aha!  Define   

 

𝑎̂ ≡ √
𝑚𝜔

2ℏ
𝑉  and  𝑎̂† ≡ √

𝑚𝜔

2ℏ
𝑉† 

 

Then 

 

𝐻 = ℏ𝜔 (𝑎̂†𝑎̂ +
1

2
) 

 

Tidy!  Even tidier a number operator  𝑁 ≡ 𝑎̂†𝑎̂ .  It’s going to tell us which energy state we’re 

in.  It’s an integer.  With that 

 

𝐻 = ℏ𝜔 (𝑁 +
1

2
) 

 

Some consequences of importance: 

 

[𝑎̂†, 𝑎̂] = −1  𝑎𝑛𝑑  [𝑎̂, 𝑎̂†] = 1 

 

Check it out.  With that, now here’s cool and illustrative.  Remember working on the Energy-

time uncertainty we found that 

 

𝜕

𝜕𝑡
〈𝑄〉 =

𝑖

ℏ
[𝐻, 𝑄] 

 

Where  Q  is any general operator.  Flip the other way, the commutator of the Hamiltonian on an 

operator is the time derivative of that operator with that quantum factor coefficient  
𝑖

ℏ
  .  Well, 

looky here.   

 

𝑖

ℏ
[𝐻, 𝑎̂] =

𝜕

𝜕𝑡
𝑎̂ =

𝑖

ℏ
(−ℏ𝜔𝑎̂) = −𝑖𝜔𝑎̂ 

 

The sequence of equations comes from   

 

[𝐻, 𝑎̂] = −ℏ𝜔𝑎̂ 

 

You can derive that result from the essential properties of the ladder operators  𝑎̂, 𝑎̂† and their 

commutation relations.   
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Anyway, where have we seen that?   

 

𝜕

𝜕𝑡
𝑎̂ = −𝑖𝜔𝑎̂ 

 

𝑎̂ = 𝑒−𝑖𝜔𝑡 

 

Plucked right out of  

 

𝜓(𝑡) = 𝑒−𝑖𝜔𝑡𝜓(0) = 𝑒
−𝑖𝐸𝑡

ℏ⁄  𝜓(0) 

 

It’s the phase operator that tells us how the wavefunction (state) evolves over time!  Trumpets!  

Fanfare!  𝑎̂  is the operator that gives a state an energy kick up to the next energy state on the 

ladder.  There’s the connection between state space and wave mechanics.   

 

____________________________________ 

 

Whew!   I’m bogged down in the harmonic oscillator.  Bogged down with the abstractions.  

What are the number operators?  What’s  |𝐸⟩ ?  What’s it mean   |𝑛⟩ =
1

√𝑛!
(𝑎̂†)𝑛|0⟩ ?  What’s 

the relation of   𝜓(𝑥)  to all the brackets?  Maybe back to the big picture to figure out all the 

parts.   

 

Take a look at that parabolic quantum well.   
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There’s the potential, built into the geometry of the well.  There are the number operators, 

counting rungs up the ladder of the wavefunctions.  There’s the lowest energy level, down at the 

bottom.  There’s the momentum built into the wavenumber at each energy level.   

 

Focus on them counting operators.  What information do they contain?  Knowing the energy 

level (number) should provide enough information to fill in all the details.  𝑥 , the only variable, 

is determined by the parabolic geometry.  So the wavefunction, fitting waves into the parabola, is 

determined, and momentum is also determined (by the  
𝜕

𝜕𝑥
  operator).  All you need to know is 

the energy level (number operator) and the potential.   

 

Good!  See if we can make it work! 

 

______________________________________ 

 

We’ve got a number state  |𝐸⟩ .  What’s the corresponding wavefunction? 

 

Figure out the expectation value  ⟨𝐸|𝐸⟩ .  No help there, just a number.  But here’s what we can 

do.  We know that  ⟨𝑎̂†𝐸|𝑎̂†𝐸⟩ = (𝑁 + 1)ℏ𝜔 ⟨𝐸|𝐸⟩ .  If we just had a bottom line, the lowest 

energy level, we could bootstrap up to all the others.  Well, we’ve got that.   

 

𝐸0 = (𝑁0 +
1

2
)ℏ𝜔  

 

𝑁0 = 0  by definition at the lowest energy state.  So the ground state energy is  
1

2
ℏ𝜔  as per we-

already-know-that.   

 

Now find the wavefunction at that lowest state from 

 

𝑎̂|𝜓0⟩ = √
𝑚𝜔

2ℏ
⟨𝜓0| (𝑥̂ +

𝑖𝑝̂

𝑚𝜔
) |𝜓0⟩ = 0 

 

The lowering operator acting on the lowest energy state gives you no state at all.   

 

Solve the differential equation and you’re set.  You’ve got the ground level energy and you can 

construct the ladder up from there.   

 

_____________________________________ 
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Here’s another perspective from R. Shankar’s text.  Shankar dives into the weeds, but he’s 

careful to emphasize the essentials.  Here are the essentials. 

 

𝑎̂  and  𝑎̂†  are defined from the Hamiltonian.  From that, note  [𝑎̂, 𝑎̂†] = 1 ,  [𝐻̂, 𝑎̂†] = 𝑎̂†  and  

[𝐻̂, 𝑎̂ ] = −𝑎̂.  That follows from the algebra of those operators.  Note that the coefficients of the 

raising and lowering operators convert to units of energy.   

 

Most important of the operators for building the ladder: 

 

𝐻 = (𝑎̂†𝑎̂ +
1

2
)ℏ𝜔 = (𝑛 +

1

2
)ℏ𝜔 

 

where  𝑛  is Shankar’s number operator.  It records which rung on the energy ladder we’re at.  

Makes sense,  𝑎̂†𝑎 ≡ 𝑛 .  Operate on an energy eigenstate with  𝑎  takes you down a rung;  then 

operate with  𝑎̂†  and you’re back where you started, on the same energy level.  Now climb the 

ladder.  Energy of the ground state  |0⟩  is   

 

(𝑛 +
1

2
)ℏ𝜔 = (0 +

1

2
)ℏ𝜔 =

1

2
ℏ𝜔 

 

Energy of the second energy level 

 

(1 +
1

2
)ℏ𝜔 =

3

2
ℏ𝜔 

 

and so on.   

 

Next abstraction, rescale the energy into quantum units of  ℏ𝜔 .  Operator  𝐻̂ ≡
𝐻

ℏ𝜔
  and 

eigenvalues  𝜀 ≡
𝐸

ℏ𝜔
  .  Those are integer numbers.  They scale the energy ladder of the harmonic 

oscillator into unit steps of  ℏ𝜔 .  We can label the rungs of the energy ladder by those numbers.  

Call them  |𝑛⟩  , energy states in the harmonic oscillator labeled by which rung of the ladder.  

That’s all we need to know to get the rest of the information about the state, e.g. it’s particular 

energy.  That’s all we need to know to figure out the spectrum. 

 

At which we should take a moment to review Shankar’s take-aways from this study of the SHO 

in a parabolic potential. 

 

1. Energy is quantized. 

2. There are unit steps  ℏ𝜔  between energy levels. 
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3. Ground state energy is  
ℏ𝜔

2
  , not zero.   

4. Wavefunctions leak out beyond the potential well, as per Adams’ discussion of 

exponential decay at the boundaries. 

5. Wavefunctions are either symmetric or antisymmetric in the potential well,  i.e. cosine-

like wavepackets or sine-like. 

6. Because of  5.  above, the probability distribution for locating a particle does not follow 

the classical predictions.  (Compare graphs of  |𝑛0⟩  and  |𝑛1⟩ .  Particle most probably 

at the center of the well in the ground state but probability zero to be found at the center 

in  |𝑛1⟩ .  

 
Onward to the matrix representation of energy eigenstates in Hilbert space. 

 

Consider the Hamilton operator acting on a number state. 

 

𝐻̂𝑎|𝜀⟩ = (𝜖 − 1)𝑎|𝜀⟩ 

 

Work it out. 

 

𝐻̂𝑎|𝜀⟩ = (𝑎𝐻̂ + [𝐻̂, 𝑎])|𝜀⟩ = (𝑎𝜀 − 𝑎)|𝜀⟩ = (𝜀 − 1)𝑎|𝜀⟩ 

 

as advertised.  We’ve substituted the energy eigenvalue  𝜀  for the operator in the last steps.   

 

Take a close look.  What that’s telling us is that  (𝜀 − 1)  is the eigenvalue for the operator  𝐻̂  

acting on the original state  𝑎|𝜀⟩ .  Since the number operators identify the states, then  𝑎|𝜀⟩  

itself must be the same as the state  |𝜀 − 1⟩  up to a phase coefficient.  Since the number operator 
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tells us everything we need to know about the energy state, if an operator transforms the original 

state  𝑎|𝜀⟩  into state  (𝜀 − 1)𝑎|𝜀⟩   then  𝑎|𝜀⟩  must equal  |𝜀 − 1⟩  up to a phase factor.  

𝐻̂𝑎|𝜀⟩ = (𝜀 − 1)𝑎|𝜀⟩ = 𝐻̂|𝜀 − 1⟩ = (𝜀 − 1)|𝜀 − 1⟩  up to a phase factor.   

 

𝑎|𝜀⟩ = 𝐶𝑛|𝜀 − 1⟩ 

 

Similarly we can show that   

 

𝐻̂𝑎̂†|𝜀⟩ = (𝜖 + 1)𝑎̂†|𝜀⟩ = (𝜖 + 1)𝐶𝑛+1|𝜀 + 1⟩ 

 

The lowering and raising operators take us down and up the energy ladder.  Up is okay.  We can 

go forever up.  Down must have a floor.  A minimum ground state energy.  What is it?  Here’s 

one advantage of Shankar’s approach. 

 

 At the ground state 

 

𝑎|𝜀0⟩ = 0 

 

Note the zero here is not a state, not an eigenvalue.  It’s a representation of nada.  Such a 

condition, a state below the ground state, does not exist.   

 

Well, if you act on a non-existing state with the raising operator, you still get nada.   

 

𝑎̂†𝑎|𝜀0⟩ = 0 

 

Now apply the operator relations. 

 

𝑎̂†𝑎|𝜀0⟩ = (𝐻̂ −
1

2
) |𝜀0⟩ = (𝜀0 −

1

2
) |𝜀0⟩ = 0 

 

So   

 

𝜀0 =
1

2
 

 

or, translated back into units of  ℏ𝜔 

 

𝐸0 =
ℏ𝜔

2
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Ground state energy is  
ℏ𝜔

2
  .  That’s how we figure it out.  Back and forth between number 

operators and the physical Hamiltonian.   

 

Now let’s go after those coefficients to the ladder operators.  Here things get a little confusing 

with labels.  Shankar (and Zwiebach, also) seem to be using the number labels and the energy 

level labels interchangeably.  They both represent which step we are on the (quantized) energy 

spectrum.  Anyway, using the number labels now: 

 

Given   

 

𝑎|𝑛⟩ = 𝐶𝑛|𝑛 − 1⟩ 

 

it follows 

 

⟨𝑛|𝑎̂†𝑎|𝑛⟩ = ⟨𝑛 − 1|𝐶𝑛
†𝐶𝑛|𝑛 − 1⟩ 

 

By previous definition,  𝑎̂†𝑎 ≡ 𝑛 , the number operator.  Rewrite. 

 

⟨𝑛|𝑛|𝑛⟩ = ⟨𝑛 − 1|𝐶𝑛
†𝐶𝑛|𝑛 − 1⟩ 

 

So   

 

𝐶𝑛
†𝐶𝑛 = 𝐶𝑛

2 = 𝑛 

 

𝐶𝑛 = √𝑛 

 

Coefficient for the eigenstate generated by the lowering operator is  √𝑛 , the square root of the 

energy level of the original state.  Similarly, coefficient for the eigenstate after the raising 

operator is  √𝑛 + 1 . 

 

𝑎̂†|𝑛⟩ = √𝑛 + 1  |𝑛 + 1⟩ 

 

And now – drum roll! – we can put it all together in operator matrix and normalized eigenstate 

vector form.  Take a look. 
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𝑎 =

[
 
 
 
 
 

  

0 1
0 0

0 ⋯

√2 0
0 0
0 0

0 0
⋮ 0

0 √3
0 0

0 0

√4 0
0 0
0 0

0 0
0 0

0 ⋱
0 0

  

]
 
 
 
 
 

 

 

 

 

𝑎† =

[
 
 
 
 
 

  

0 0
1 0

0 ⋯
0 0

0 √2
⋮ 0

0 0

√3 0 0

0 0 √4
0

0 0
⋱ 0

  

]
 
 
 
 
 

 

 

 

𝐸 = ℏ𝜔

[
 
 
 
 
 
 
 
 

  

1

2
0

0
3

2

⋯

⋮

5

2
7

2
9

2

⋱

  

]
 
 
 
 
 
 
 
 

 

 

So when you raise the  𝑛 = 𝜀 = 3  eigenstate, for example 

 

𝐻̂𝑎†|3⟩  =  ℏ𝜔

[
 
 
 
 
 
 
 
 

  

1

2
0

0
3

2

⋯

⋮

5

2
7

2
9

2

⋱

  

]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 

  

0 0
1 0

0 ⋯
0

0 √2
⋮

0

√3 0

√4 0
⋱ 0

  

]
 
 
 
 
 

 

[
 
 
 
 
 

 

0
0
1
0
0
⋮

 

]
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= ℏ𝜔

[
 
 
 
 
 
 
 
 

  

1

2
0

0
3

2

⋯

⋮

5

2
7

2
9

2

⋱

  

]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 

 

0
0
0

√3
0
⋮

 

]
 
 
 
 
 

 

 

=

[
 
 
 
 
 

 

0
0
0

(
7

2
)√3

0
⋮

 

]
 
 
 
 
 

ℏ𝜔 

 

 Pretty slick!  Take a close look at how those row and column indices are working to raise from 

energy level 3 to 4.   

 

But that’s not quite the whole story.  We’ve got to construct the spectrum from the ground state 

up, rung by rung up the energy ladder.  And we have to normalize.  Start with orthonormal 

eigenstates and you have to maintain orthonormal states.  Not too bad, really.  Here’s the grand 

finale. 

 

|𝑛⟩ =
1

√𝑛!
(𝑎†)𝑛|0⟩ 

 

Start with the ground state.  Operate  𝑛  times with the raising operator, as per the example 

above.  Divide each time by the coefficient to maintain unit norm.  Ta da!  You’ve got the 

spectrum of the quantum harmonic oscillator! 

 

Best introduction to next idea is email I sent to Prof. Zwiebach re: his derivation of the 

Schrodinger equation from the time operator,  U : 

 

___________________ 

 

I am working through your MIT OCW Physics 8.05.  In Lecture 12, Dynamics, you derive the 

Schrodinger equation from the unitary time operator.  It struck me that the result is (or sure looks 

like) a continuity equation, where the Hamiltonian operator is a 'current' and the norm of the state 

vector is a conserved 'charge.' 

 

𝑖ℏ
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ =

𝜕𝑈0
𝑡

𝜕𝑡
𝑈0

𝑡†|𝜓(𝑡)⟩ 
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A continuity relation seems to make sense, a la Noether, with regard to conservation of 

energy.  Anyway, I was curious if this notion has any merit.  On superficial review of the 

literature, I find SE as continuity of probability, but I don't see any reference to this way of 

thinking about continuity of the time-dependent SE. 

 

I'm an old geezer, retired high school teacher, trying to figure out quantum gravity.  I've been 

brushing up on QM.  I've sure enjoyed your video lectures, and I've learned a whole lot.  Thanks 

very much for making these ideas accessible to the rest of us. 
 

____________________________ 

 

 

Here’s the full monty.  Start with the Bloch sphere.   

 

 
 

Figure.  Bloch sphere.  Credit Andreas Ketterer.  2016.  Modular variables in quantum 

information.  Thesis. 

 

A unitary time operator rotates the (normalized) state vector around the Bloch sphere in Hilbert 

space time step by step.  Let  𝑈0
𝑡  represent the operator that takes the state  |𝜓(0)⟩  to  |𝜓(𝑡)⟩ . 

 

𝑈0
𝑡 |𝜓(0)⟩ = |𝜓(𝑡)⟩  
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Figure.  Time operator on the Bloch sphere.  U  updates the wavefunction in time increments.   

 

The unitary time operator is unique.  It evolves any state to its next time increment.  And by 

definition it’s reversible 

 

𝑈0
0 = 𝐼 

and 

𝑈𝑡
0𝑈0

𝑡 = 𝐼 

so 

𝑈0
𝑡 = 𝑈𝑡

0†
 

 

I’m using the indices here for general purposes.  They could be any  𝑡1  and  𝑡2 . 

 

 

Also   

𝑈𝑡2
𝑡3𝑈𝑡1

𝑡2 = 𝑈𝑡1
𝑡3 

 

With that, we’re all set to derive the time-dependent Schrodinger equation.  Start with 

 

𝜕

𝜕𝑡
|𝜓(𝑡)⟩ =

𝜕

𝜕𝑡
(𝑈0

𝑡 |𝜓(0)⟩) 
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The only time dependence on the rhs is in the unitary operator, so 

 

𝜕

𝜕𝑡
|𝜓(𝑡)⟩ =

𝜕𝑈0
𝑡

𝜕𝑡
|𝜓(0)⟩ 

 

We want the same eigenstate  |𝜓(𝑡)⟩  on both sides.   

 

𝜕

𝜕𝑡
|𝜓(𝑡)⟩ =

𝜕𝑈0
𝑡

𝜕𝑡
 𝑈𝑡

0|𝜓(𝑡)⟩ =
𝜕𝑈0

𝑡

𝜕𝑡
 𝑈0

𝑡†|𝜓(𝑡)⟩ 

 

Call that operator on the rhs  Λ .   

 

Λ ≡
𝜕𝑈0

𝑡

𝜕𝑡
 𝑈0

𝑡† 

and 

Λ† ≡ 𝑈0
𝑡
𝜕𝑈0

𝑡†

𝜕𝑡
  

 

Note that the lambda operators are currents!  Just like   

 
𝜕 𝜓(𝑥)

𝜕𝑡
 𝜓∗(𝑥) 

is the probability current.   

 

Claim is that the lambda operators anti-commute. 

 

Λ + Λ† = 0 
Easy to show: 

 

𝜕

𝜕𝑡
 (𝑈0

𝑡𝑈0
𝑡†) =

𝜕

𝜕𝑡
𝐼 =

𝜕𝑈0
𝑡

𝜕𝑡
 𝑈0

𝑡† + 𝑈0
𝑡
𝜕𝑈0

𝑡†

𝜕𝑡
= Λ + Λ† = 0 

 

Multiply both sides by a factor  𝑖ℏ .  That converts the lambdas to commuting operators. Then 

we’re set.   

 

𝑖ℏ
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = 𝑖ℏ

𝜕𝑈0
𝑡

𝜕𝑡
 𝑈0

𝑡†|𝜓(𝑡)⟩ = 𝑖ℏ Λ|𝜓(𝑡)⟩ 

 

Now  𝑖ℏ Λ  is a unitary, time-step Hermitian operator.  What’s in a name?  Call it  𝐻̂ . 

 

𝑖ℏ
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = 𝐻̂|𝜓(𝑡)⟩ 

 

Schrodinger!  And cool thing is, by all appearances it’s a continuity equation.  Λ  hence  𝐻̂  is a 

current.  It’s a current in time.  It’s the flow of time.   
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𝐻̂ = 𝑖ℏ
𝜕𝑈0

𝑡

𝜕𝑡
 𝑈0

𝑡† 

 

That derivative-times-operator is a current just like the probability density current   

𝐽 =
𝜕𝜓(𝑥)

𝜕𝑥
 𝜓(𝑥)∗ .  The conserved ‘charge’ is the norm of the state vector. 

 

⟨𝜓(𝑡)| 𝑖ℏ
𝜕

𝜕𝑡
 |𝜓(𝑡)⟩ − 𝐻̂ = 0 

 

A charge.  A Noether current.  Symmetry.  It’s all right there.  Energy is conserved.   

 

Well, hardly surprising.  We’ve seen that from the commutation relations and a bunch of other 

things before.  Still, pretty cool that it appears in Schrodinger.  Or that you can derive 

Schrodinger from Noether.   

 

 

Lecture 13:  Dynamics (cont’d) and the Heisenberg operator 

 

What’s next is to understand the unitary time evolution operator in terms of the Hamilton 

operator.  Any calculation in quantum mechanics generally starts with a Hamiltonian.  That’s the 

physics.  From that we want to figure out  𝑈 , to help with the maths. 

 

Finding the relation is straightforward.  Return to Schrodinger. 

 

𝑖ℏ
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = 𝑖ℏ

𝜕

𝜕𝑡
(𝑈0

𝑡 |𝜓(0)⟩) = 𝐻̂|𝜓(𝑡)⟩ = 𝐻̂ (𝑈0
𝑡 |𝜓(0)⟩) 

 

Since the only time-dependence is in the  𝑈0
𝑡′𝑠  we can write 

 

𝑖ℏ
𝜕

𝜕𝑡
𝑈0

𝑡 = 𝐻̂ 𝑈0
𝑡 

 

and solve!  For a time-dependent Hamiltonian, 

 

𝑈0
𝑡 = 𝑒

−𝑖𝐻𝑡
ℏ⁄  

 

Similarly for a ‘slightly’ time-dependent Hamiltonian. 

 

 

𝑈0
𝑡 = 𝑒

−𝑖𝐻(𝑡1−𝑡0)
ℏ

⁄
 

 

The whole-shebang Hamiltonian-time-dependence follows: 
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𝑈0
𝑡 = 𝑒𝑥𝑝 (−

𝑖

ℏ
∫ 𝐻(𝑡) 𝑑𝑡

𝑡

0

) 

 

That comes from the Taylor series of the exponential with the time ordering operator.  See Prof. 

Z’s notes for details.  Anyway, makes sense just by the looks of it.  Time operator increments 

step by step over time, driven by the Hamiltonian. 

 

Onward to Heisenberg operators.  By our previous definition, 

 

𝐴𝐻 ≡ 𝑈0
𝑡†𝐴𝑆𝑈0

𝑡 
 

where the  H  and the  S  subscripts refer to Heisenberg and Schrodinger.  Schrodinger operators 

are all the usuals,  𝑥̂, 𝑝̂, 𝐻̂, etc.  The dynamics now is shifted to the Heisenberg operator.   

 

By the definition, 

 

⟨𝜓(𝑡)|𝐴𝑠|𝜓(𝑡)⟩ = ⟨𝜓(0)|𝑈0
𝑡†𝐴𝑆𝑈0

𝑡|𝜓(0)⟩ = ⟨𝜓(0)|𝐴𝐻|𝜓(0)⟩ 

 

That’s handy.  The Heisenberg operator allows us to choose an initial state to study the 

dynamics, and we can stick with that state through our calculations.   

 

This definition gives a bunch of handy relations linking Heisenberg to the usual Schrodinger 

operators. 

 

𝐶𝑆 = 𝐴𝑆𝐵𝑆  →   𝐶𝐻 = 𝑈0
𝑡†𝐴𝑆𝑈0

𝑡𝑈0
𝑡†𝐵𝑆𝑈0

𝑡 = 𝑈0
𝑡†𝐴𝑆𝐼𝐵𝑆𝑈0

𝑡 = 𝑈0
𝑡†𝐴𝑆𝐵𝑆𝑈0

𝑡 = 𝐶𝐻 
 

and the commutator relations are unchanged.   

 

[𝐴𝐻 , 𝐵𝐻] = [𝑈0
𝑡†𝐴𝑆𝑈0

𝑡, 𝑈0
𝑡†𝐵𝑆𝑈0

𝑡] = (𝑈0
𝑡†𝐴𝑆𝑈0

𝑡) (𝑈0
𝑡†𝐵𝑆𝑈0

𝑡) − (𝑈0
𝑡†𝐵𝑆𝑈0

𝑡) (𝑈0
𝑡†𝐴𝑆𝑈0

𝑡) 

 

= (𝑈0
𝑡†𝐴𝑆𝐵𝑆𝑈0

𝑡) − (𝑈0
𝑡†𝐵𝑆𝐴𝑆𝑈0

𝑡) = 𝐴𝐻𝐵𝐻 − 𝐵𝐻𝐴𝐻 = [𝐴𝐻 , 𝐵𝐻] 

 

sure enough!  Note that out of laziness I’ve dropped the operator hat symbols.   

 

From this we can prove anew that   𝑖ℏ
𝜕

𝜕𝑡
𝐴𝐻 = [𝐴𝐻, 𝐻𝐻] . 

 

Start with Schrodinger. 

 

𝑖ℏ
𝜕

𝜕𝑡
𝐴𝐻 = 𝑖ℏ

𝜕

𝜕𝑡
𝑈0

𝑡†𝐴𝑆𝑈0
𝑡 = 𝑖ℏ(

𝜕𝑈0
𝑡†

𝜕𝑡
𝐴𝑆𝑈0

𝑡 + 𝑈0
𝑡†

𝜕𝐴𝑆

𝜕𝑡
𝑈0

𝑡 + 𝑈0
𝑡†𝐴𝑆

𝜕𝑈0
𝑡

𝜕𝑡
) 

 

Convert the time derivatives of the unitary operators to their Hamiltonians.   
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= −𝑈0
𝑡†𝐻̂𝑆𝐴𝑆  𝑈0

𝑡 + 𝑖ℏ (𝑈0
𝑡†

𝜕𝐴𝑆

𝜕𝑡
𝑈0

𝑡) + 𝑈0
𝑡†𝐴𝑆𝐻̂𝑆 𝑈0

𝑡 

 

= −𝑈0
𝑡†𝐻̂𝑆𝐴𝑆  𝑈0

𝑡 + 𝑈0
𝑡†𝐴𝑆𝐻̂𝑆 𝑈0

𝑡 + 𝑖ℏ (𝑈0
𝑡†

𝜕𝐴𝑆

𝜕𝑡
𝑈0

𝑡) 

 

= [𝐴𝐻, 𝐻𝐻] + 𝑖ℏ (𝑈0
𝑡†

𝜕𝐴𝑆

𝜕𝑡
𝑈0

𝑡) 

 

Now if  𝐴𝑆 , the Schrodinger operator, has no time dependence, the last term disappears, and 

we’re left with the commutator relation as proved.   

 

None of this is real surprising, but it’s interesting to see how those Heisenberg operators work.   

 

Take a look now how the Heisenberg picture simplifies our understanding of the physics.  

Following comes from Prof. Z as well as Shankar’s text.   

 

First note the geometric relation between the Schrodinger and Heisenberg pictures.  

Schrodinger’s (vector) states rotate around Hilbert space against fixed coordinates (the 

eigenstates).  Heisenberg, on the other hand, says the states are fixed and the coordinates rotate.  

It’s the basis vectors, as represented in the operators, that are changing over time.  The physics in 

both pictures is the same.  Calculations come out the same.  Just a different way of looking at the 

world, and Shankar says there’s a whole lot of other models we might build.  Lots of room for 

creative thinking.   
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Figure.  Schrodinger vs. Heisenberg operators.  Schrodinger rotates the wavefunction, 
Heisenberg rotates the axes.   
 

 

The Heisenberg picture simplifies our thinking about the physics.  H makes the dynamics look 

the same as in classical physics.  For example, in the quantum harmonic oscillator 

 

𝜕𝑥̂

𝜕𝑡
= [𝑥̂, 𝐻̂] = [𝑥̂, (−

𝑖

ℏ

𝑝̂2

2𝑚
+

1

2
𝑚𝜔2𝑥̂2)] = [𝑥̂, (−

𝑖

ℏ

𝑝̂2

2𝑚
)] 

 

Whoa!  What happened to the second term in the Hamiltonian?  Well, it commutes with  𝑥̂  so 

disappears from the equation.   

 
𝜕𝑥̂

𝜕𝑡
= −

𝑖

ℏ

1

2𝑚
[𝑥̂, 𝑝̂2] = −

𝑖

ℏ

1

2𝑚
([𝑥̂, 𝑝̂]𝑝̂ + [𝑥̂, 𝑝̂]𝑝̂) 

 

where that last step pulled out one of the two  𝑝̂  operators for each term; you have to calculate 

the commutator twice; once for each  𝑝̂ .  So 

 
𝜕𝑥̂

𝜕𝑡
= −

𝑖

ℏ

1

2𝑚
([𝑥̂, 𝑝̂]𝑝̂ + [𝑥̂, 𝑝̂]𝑝̂) = −

𝑖

ℏ

1

2𝑚
(2𝑖ℏ𝑝̂) =

𝑝̂

𝑚
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Just as in classical mechanics!  Heisenberg operators return the classical equation of motion!   

 

Same for   
𝜕𝑝

𝜕𝑡
  . 

 

𝜕𝑝̂

𝜕𝑡
= [𝑝̂, 𝐻̂] = [𝑝̂, (−

𝑖

ℏ

𝑝̂2

2𝑚
+

1

2
𝑚𝜔2𝑥̂2)] = [𝑝̂, (

1

2
𝑚𝜔2𝑥̂2)] 

 

Same rationale here for dropping the first term in the Hamiltonian.  It commutes with  𝑝̂ . 

 
𝜕𝑝̂

𝜕𝑡
=

𝑖

ℏ

1

2
𝑚𝜔2[𝑝̂, 𝑥̂2] =

𝑖

ℏ

1

2
𝑚𝜔2([𝑝̂, 𝑥̂]𝑥̂ + [𝑝̂, 𝑥̂]𝑥̂) 

 
𝜕𝑝̂

𝜕𝑡
=

𝑖

ℏ

1

2
𝑚𝜔2(2𝑖ℏ𝑥̂) = −𝑚𝜔2𝑥̂ 

 

Shankar’s other observation deserves repeat.  Back to the definition.  Because the Heisenberg 

operators do all the lifting for time evolution we can solve the dynamics just based on some 

initial state, which presumably we can determine.  Which is the whole point.  We know a state to 

start with and we want to see how it evolves.   

 

 

Lecture 14:  Coherent states 

 

Coherent states are replicates.  Well, sort of.  They share the same energy but differ in other 

observables.   

 

Take the quantum harmonic oscillator for example.  Lowest eigenstate, the ground state, has 

energy  
1

2
ℏ𝜔 .  But we could shift the apparatus a bit and the ground state over there is the same  

1

2
ℏ𝜔  as the ground state here.  Coherent.   

 

Prof. Zwiebach starts the lecture with a review of dynamics:  position and momentum operators 

as functions of time. 

 

𝑥̂(𝑡) = 𝑥̂(0)𝑐𝑜𝑠(𝜔𝑡) +
𝑝̂

𝑚𝜔
(0)𝑠𝑖𝑛(𝜔𝑡) 

 

𝑝̂(𝑡) = 𝑝̂(0)𝑐𝑜𝑠(𝜔𝑡) − 𝑚𝜔𝑥̂(0)𝑠𝑖𝑛(𝜔𝑡) 
 

New addition is the Heisenberg dynamics of the ladder operators.   

 

𝑎̂𝐻 = 𝑒−𝑖𝜔𝑡𝑎̂ 
and 

𝑎̂𝐻
† = 𝑒𝑖𝜔𝑡𝑎̂† 
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Essential tools for understanding coherent states are the translation operators. 

 

𝑇𝑥0
≡ 𝑒

−𝑖𝑝𝑥0
ℏ

⁄
 

 

What it does is increment the position by an interval  𝑥0 .  Maybe a more consistent symbolic 

representation would be  

 

𝑇𝑥
𝑥0 ≡ 𝑒

−𝑖𝑝𝑥0
ℏ

⁄
 

 

That is, the translation operator takes the state from position  𝑥  to position  𝑥 + 𝑥0 . 

 
Figure.  Heisenberg translation operator on quantum harmonic oscillator.   
 

Note the relation to the momentum operator.  𝑝̂ =
𝑖

ℏ

𝜕

𝜕𝑥
 .  Translation by delta-x along the 

quantum oscillator boosts the momentum up the ladder.  Makes me wonder if the whole universe 

is a quantum harmonic oscillator . . .   That seems consistent with the differential representation 

of the momentum operator anyway.   

 

Note the parallel to the unitary time operator.  𝑈0
𝑡  takes the state from time  0 , some time we 

choose to call zero on our stopwatch, to some later time  t .  𝑈0
𝑡  is moving the state through time.  
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𝑇𝑥
𝑥0  is moving the state through space.  Which raises the question, is there some relativistic 

relation  𝑇𝑥
𝑥02

− 𝑈0
𝑡2 = 𝑆2 ?   A metric?   

 

Anyway, back to the standard stuff.  Given the symbolic representation, the algebra of the 

translation operator is pretty clear from the physics.   

 

𝑇𝑥0

† = 𝑇−𝑥0
= (𝑇𝑥0

)
−1

 

so 

𝑇𝑥0

†𝑇𝑥0
= 𝐼 

 

That is, you’ve translated to a new position then right back to where you started.   

 

𝑇𝑥0
𝑇𝑦0

= 𝑇𝑥0+𝑦0
 

 

That is, translation steps are additive. 

 

Note the representation for  𝑇𝑥0
  acting on the position operator. 

 

𝑇𝑥0

†𝑥̂ 𝑇𝑥0
= 𝑥̂ + 𝑥0𝐼 

 

Think about that one.  Talking operators here.  lhs is an operator.  It’s rotating basis axes relative 

to a state vector.   

 

⟨𝜓(𝑥)|𝑇𝑥0

†𝑥̂ 𝑇𝑥0
|𝜓(𝑥)⟩ = ⟨𝜓(𝑥)|𝑥̂ |𝜓(𝑥)⟩ + 𝑥0𝐼 

 

Take a look at the state vectors.  (See Figure above, translation on the quantum harmonic 

oscillator.)   

 

𝑇𝑥0
|𝑥⟩ = |𝑥 + 𝑥0⟩ 

 

Switching between state vectors and the wavefunction 

 

|𝜓⟩  →  𝜓(𝑥) 
 

𝑇𝑥0
|𝜓⟩  →  𝜓(𝑥 − 𝑥0) 

 

Note the minus sign.  That’s the usual rule for translating functions across the coordinates.  

Minus sign if you move the function to the right.   

 

Now that we’ve got the tools, on to coherent states.  In the quantum harmonic oscillator 

 

|𝑥̃0⟩ ≡ 𝑇𝑥0
|0⟩ = 𝑒

−𝑖𝑝𝑥
ℏ⁄ |0⟩ 
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That’s it.  By definition, a coherent state is the ground state of the harmonic oscillator translated 

is position but still in the ground state.  Slide the pendulum a bit to the right.  Move the 

snowboard pipe a tad further around the hill.  Energy states are unchanged.  Coherent.   

 

__________________________________ 

 

Here’s an aside.  How do you run a unit analysis quickly so you can understand, for example, the 

coefficients in the expectation values?  It crossed my mind a good start is in the equivalents for 

the Planck constant.   

 

ℏ = 𝐸𝑡 = 𝑝𝑥 
 

Play around a bit, makes sense.   

 

𝐸 = 𝑝
𝑥

𝑡
 

 

standard units for kinetic energy, momentum times velocity. 

 

Or 

 
𝐸

𝑥
=

𝑝

𝑡
 

 

Hamilton equations of motion.   

 

Take a look then at the position and momentum equations of motion we’ve derived in our 

dynamics.   

 

𝑥̂(𝑡) = 𝑥̂(0)𝑐𝑜𝑠(𝜔𝑡) +
𝑝̂

𝑚𝜔
(0)𝑠𝑖𝑛(𝜔𝑡) 

 

That coefficient  
ℏ

𝑚𝜔
𝑝̂(0)  should give units of  𝑥 .  Let’s see.  First term on the rhs is fine.  

Second term needs some reckoning.  Units. 

 
1

𝑚𝜔
𝑝̂(0) =

𝑝

𝐸
𝜔𝑥2⁄

=
𝑝

ℏ
𝑥2⁄

=
𝑝

𝑝𝑥
𝑥2⁄

= 𝑥 

 

where I simplified at the second step using the harmonic oscillator  𝑉 =
1

2
𝑚𝜔2𝑥2  and, third 

step, the units  𝜔 =
1

𝑡
 . 

 

It works!  No great surprise, but maybe it will help keep track of the coefficients.   

 

______________________________________ 
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Back to Zwiebach and the coherent states.  A few more key ingredients. 

 

⟨𝑥̃0|𝑥̃0⟩ = 1 
 

General expectation values under translations: 

 

⟨𝑥̃0|𝐴̂|𝑥̃0⟩ = ⟨0|𝑇𝑥0

†𝐴̂𝑇𝑥0
|0⟩ 

 

So, for example, expectation value for position under translation isn’t surprising: 

 

⟨𝑥̃0|𝑥̂|𝑥̃0⟩ = ⟨0|(𝑥 + 𝑥0)|0⟩ = 𝑥0 
 

But expectation value for momentum is a bit counter-intuitive:   

 

⟨𝑥̃0|𝑝̂|𝑥̃0⟩ = 0 
 

That’s because it’s a (Schrodinger) stationary state, wavefunction just sitting there.  No 

momentum.  Finally, expectation value for energy 

 

⟨𝑥̃0|𝐻̂|𝑥̃0⟩ = ⟨0|𝐻̂|0⟩ +
1

2
𝑚𝜔2𝑥0

2 =
1

2
ℏ𝜔 +

1

2
𝑚𝜔2𝑥0

2 

 

Energy in the coherent state is augmented by the potential at the (displaced) position 𝑥0 . 

Makes sense.    

 

And for future reference: 

 

⟨𝑥̃0|𝑥̂
2|𝑥̃0⟩ = 𝑥̃0

2 +
ℏ

2𝑚𝜔
 

 

⟨𝑥̃0|𝑝̂
2|𝑥̃0⟩ =

𝑚𝜔ℏ

2
 

 

⟨𝑥̃0|𝑥̂𝑝̂ + 𝑝̂𝑥̂|𝑥̃0⟩ = 0 
 

 

Onward to the dynamics.  We’ll use the good ol’ Heisenberg operators so we can access classical 

thinking.   

 

⟨𝑥̃0(𝑡)|𝐴̂𝑆|𝑥̃0(𝑡)⟩ = ⟨𝑥̃0|𝐴̂𝐻|𝑥̃0⟩ 
 

Try it out on the position operator.  See what happens to the coherent state position over time.   

 

⟨𝑥̃0|𝑥̂𝐻|𝑥̃0⟩ = ⟨𝑥̃0|𝑥̂(0)𝑐𝑜𝑠(𝜔𝑡) +
𝑝̂(0)

𝑚𝜔
𝑠𝑖𝑛(𝜔𝑡)|𝑥̃0⟩ = 𝑥0𝑐𝑜𝑠(𝜔𝑡) 
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As per the general results above, the momentum disappears.  As it should.  And looky!  It’s the 

good old classical equation!  The position oscillates around zero.   

 

 

Lecture 15:  Coherent states and squeezed states 

 

Prof. Zwiebach calculates the general coherent state, which includes the ladder operators, and he 

explains the squeezed state.  The math is complicated, and I won’t reproduce it here.  Just lazy, I 

guess, but I’m getting antzy, want to head back to the frontier, quantum information and gravity.  

Time to get moving, finish up the QM review.   

 

Squeezed states are worth some discussion, though.  I’ve always wondered what they were.  

Prof. Z. explains them well.  Here’s the notion.   

 

Take a coherent state in the ground state of a Hamiltonian.  It has an uncertainty 

 

∆𝑥1 = √
ℏ

2𝑚1𝜔1
 

 

where the subscripts identify the particular Hamiltonian.   

 

Now zap the system into a new Hamiltonian.  Calculate the new uncertainty. 

 

∆𝑥2 = √
ℏ

2𝑚2𝜔2
= √

𝑚1𝜔1

𝑚2𝜔2

√
ℏ

2𝑚1𝜔1
 

 

Now if   

 

𝛾 ≡ √
𝑚1𝜔1

𝑚2𝜔2
 < 1 

 

as in if the energy of the second state is higher than the first, then the state has been squeezed.  

Think of a Gaussian.  It isn’t as wide as it was to start with.  It has a sharper peak.   
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Figure.  Squeezed state illustrated as Gaussian function squeezed by boost to higher potential.   
 

Represent that transformation as an operator.  If you want to build a squeezed state you need a 

squeezing operator.   

 

𝑆(𝛾) = 𝑒−
𝛾

2⁄ (𝑎̂†𝑎̂†−𝑎̂𝑎̂) 
 

Note that it is quadratic in the ladder operators, and note the order of those operators in the 

exponent.  Annihilation op’s have to be to the right, acting first on the state you’re squeezing.  

Otherwise the whole thing blows up, driving the state upward with successive creation operators.  

Now define the squeezed vacuum state 

 

|0𝛾⟩ = 𝑆(𝛾)|0⟩ 

 

Applications of squeezed states are really interesting.  LIGO uses translation and squeezing 

operators to reduce noise in its detection system.  The mirrors oscillate a bit because of thermal 

noise.  That smears out the gravity wave signal.  Solution:  squeeze the detector photons so 

they’re less exposed to mirror fluctuations and translate them to where they should be if the 

mirror was absolutely quiet.   

 

|𝛼, 𝛾⟩ = 𝐷(𝛼)𝑆(𝛾)|0⟩ 
 

Pretty cool!  Squeezed states do marvelous things.  Perform sharper measurements.  Send sharper 

signals.   
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Lecture 16:  Photon coherent states and two-state systems 

 

Idea here is you can write the Hamiltonian for the electromagnetic field in a way that looks like 

the harmonic oscillator. 

 

𝐸 =
1

2
(𝑝2 + 𝜔2𝑞2) 

 

Beware;  E  here is the electromagnetic field.  Looks the same as the harmonic oscillator but 

without mass.  It’s reasonable in units:  [𝑝𝑞] = [ℏ] .  So convert to operators and declare 

 

𝐻 ≡
1

2
(𝑝̂2 + 𝜔2𝑞̂2) 

where 

𝑞̂ = √
ℏ

2𝜔
 (𝑎̂ + 𝑎̂†) 

and 

𝑝̂ = √
ℏ𝜔

2
(𝑎̂ − 𝑎̂†) 

 

so 

𝐻 = ℏ𝜔 (𝑎̂†𝑎̂ +
1

2
) = ℏ𝜔 (𝑁 +

1

2
) 

 

N  now is the photon energy.  Just like ladder operator stuff in the harmonic oscillator.  What’s it 

all mean?  Well consider the photon.  It’s a quantum of the electromagnetic field.  Think of it as 

a coherent state, a mode in the stupendous harmonic oscillator well of the electromagnetic 

universe.  It has an associated momentum and potential energy, oscillating as it is between its 

potential boundaries.  Mass on a spring but no mass.  Just the spring oscillating.  That said, we 

can assign the usual ladder operators to the Hamiltonian just as in the QHO.  Same maths.   

 

All that said, we can think of the field itself as an operator. 

 

𝐸̂ = 𝜀0(𝑒
−𝑖𝜔𝑡𝑎̂ + 𝑒−𝑖𝜔𝑡𝑎̂†)𝑠𝑖𝑛(𝑘𝑧) 

 

where the field is polarized along the  𝑧-axis. 

 

 

Lectures 17 and 18:  Two-state systems, ammonia and NMR 

 

Two-state systems include e.g. spin states and the ammonia molecule:  you can capture them 

neatly with a  2 × 2  Hamiltonian matrix thusly: 
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𝐻 = [ 
𝑔0 + 𝑔3 𝑔1 − 𝑔2

𝑔1 + 𝑔2 𝑔0 − 𝑔3
 ] = 𝑔0𝐼 + 𝑔1𝜎𝑥 + 𝑔2𝜎𝑦 + 𝑔3𝜎𝑧 

 

In this mathematical structure, all the dynamics involves some kind of ‘precession.’  Magnetic 

moment in a magnetic field as the prime example, of course, but same maths describe the 

ammonia molecule and other two-state systems.   

 

Note the rubric to build models.   

1. Find a likely Hamiltonian 

2. Find the energy eigenstates and eigenvalues 

3. Find the expectation values 

4. Find the dynamics, i.e. the time evolution coefficients 

 

Ammonia is really interesting.  It’s a two-state system, nitrogen either above or below the plane 

of hydrogen atoms, so it has an electric dipole.  Put it in an electric field and you separate 

molecules by energy  ∆  above or below the ground state. 

 
Figure: ammonia molecule.  Nitrogen (green) oscillates across the plane of the three hydrogens.  
It is a dipole molecule with characteristic flip frequency. An electric field separates the two 
states.   
 

Eigenstates you can label, as per usual 

 

|↑⟩ = [ 
1
0
 ]   and  |↓⟩ = [ 

0
1
 ] 

 

Then the Hamiltonian becomes 

 

𝐻 = [ 
∆ 𝜀0𝐸

𝜀0𝐸 −∆
 ] 
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From there you can calculate dynamics, which (no surprise) includes terms like  𝑒𝑥𝑝 (
𝑖𝜔𝑡

ℏ
)  and  

𝑐𝑜𝑠(𝜔𝑡) , where  𝜔  is the Larmour (precession) frequency.  From those dynamics you can 

calculate how long it takes, time  T ,  for an up state to flip down.  And that, my friend, lets you 

build  masers! 

 

Separate states with a gradient electric field.  Send up state into a resonant cavity of just the right 

length such that the transit time = T .  That’s just right for the molecule to emit a photon of 

energy = 2∆ .  Photons pile up in the cavity.  Let them leak out and you’ve got a maser.  Nobel 

prize for Townes et al in 1964.    

 
Figure:  ammonia maser.  An electric field splits ammonia beam into high- and low-energy 
states (relative to the field).  High energy state enters resonant cavity with dimensions such 
that the beam drops to low energy and releases a photon as it traverses the cavity.   
 

 

It’s all right there in those matrix operators and state vectors and a little bit of math.  (Well, quite 

a bit of math.) 

 

NMR uses the same maths tools.  Apparatus has a twist to it, though, a rotating magnetic field.  

Put your target nucleus in a really strong, constant  𝐵𝑧  field.  Add a rotating  B  field in the  x-y  

plane.  Nuclear spin precesses around  𝐵𝑧  and also around the (rotating)  𝐵𝑥 .  Effect is to torque 

the spin axis down into the  𝑥 − 𝑦  plane.  As it spirals down, it radiates at the frequency of the 

rotating  𝐵𝑥 .  Tune the detectors to that frequency.  You’re seeing mostly the hydrogens in water 

water molecules.  Strength of the signal depends on the water concentration and the composition 

of neighboring molecules.  You can get even more information from the damping time and 

relaxation time;  how long does it take to spiral down, and how long to revert to alignment along  

𝐵𝑧 . 
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Figure NMR.  In a constant external magnetic field  B  and rotating field in the 𝑥-𝑦 plane  𝐵𝑟  
nuclear spin will precess from the  𝑧  pole down into the 𝑥-𝑦 plane.  The process emits cyclotron 
radiation as it drops into the plane, and that information is used to construct an image.   
 

 

Lecture 19:  Tensor product and teleportation 

 

I finally get it!  Tensor product is not really a multiplication.  It’s a record-keeping system for 

multiparticle states.   

 

Main idea is that you can’t describe a multiparticle system just by listing the individual 

properties of all the component particles.  It’s not enough to know the position and momentum of 

each individual particle.  Those particles are correlated.  Their wavefunctions interact.  You have 

to keep track of all those correlations, all that entanglement.   

 

If   𝑉  is the Hilbert space of one particle and  𝑊  the Hilbert space of a second particle, then the 

Hilbert space of a system with both particles is  𝑉 ⨂ 𝑊.  For example, given two spin-half 

particles, their vector spaces  

 

𝑉 = 𝑊 = { |+⟩ , |−⟩ } 
and 

𝑉 ⨂ 𝑊 = { |+⟩ ⨂ |+⟩ , |+⟩ ⨂ |−⟩ , |−⟩ ⨂ |+⟩ , |−⟩ ⨂ |−⟩ } 
 

By convention we’ll typically drop the  ⨂  between state vectors.   

 

𝑉 ⨂ 𝑊 = { |+⟩|+⟩ , |+⟩|−⟩ , |−⟩|+⟩ , |−⟩|−⟩ } 
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Note that the dimension of the tensor product state is the product of the dimensions of the two 

component states.  All the usual rules of linear algebra apply:  scalar coefficients distribute and 

so do vector states. 

 

𝑎𝑢 ⨂ (𝑣 ⨂ 𝑤) = 𝑎(𝑢 ⨂ 𝑣) ⨂ 𝑎(𝑢 ⨂ 𝑤) 
 

With those rules you can do all kinds of marvelous things.  Like for example build a quantum 

teleportation system.  The physical system in the following example uses spin states.  Spin 

operators are unitary, so conserve probability and information.   You implement the operators 

with varying magnetic fields.  Them’s what goes into the Hamiltonians we call quantum logic 

gates.  Them’s what’s the physical instantiation of the operators.  The gates are magnets.   

 

Here’s an illustration of spin operators on Bell states.  We’ll use them for teleportation.  Define 

the Bell state  

 

|𝜙0⟩ ≡
1

√2
(|+⟩|+⟩ + |−⟩|−⟩ ) 

 

Unitary.  Normalized.  Perfect.  Now operate with the spin operators.  Note that we have to use 

augmented operators, i.e. ( 𝐼 ⨂ 𝜎1), since we have a two-particle system.   

 

|𝜙1⟩ = (𝐼 ⨂ 𝜎1) ⨂ |𝜙0⟩ =
1

√2
(|+⟩|−⟩ + |−⟩|+⟩ ) 

 

Think about that.  The  I  in the operator preserves the state of the first particle.  𝜎1  flips up to 

down and vice versa, acting on the second particle.  Similarly 

 

|𝜙2⟩ = (𝐼 ⨂ 𝜎2) ⨂ |𝜙0⟩ =
𝑖

√2
(|+⟩|−⟩ − |−⟩|+⟩ ) 

 

|𝜙3⟩ = (𝐼 ⨂ 𝜎3) ⨂ |𝜙0⟩ =
1

√2
(|+⟩|+⟩ − |−⟩|−⟩ ) 

 

 

Work backwards to the paired states.  We’ll need those for teleportation. 

 

|+⟩|+⟩ =
1

2
(|𝜙0⟩ + |𝜙3⟩) 

 

|+⟩|−⟩ =
1

2
(|𝜙1⟩ − 𝑖|𝜙2⟩) 

 

|−⟩|+⟩ =
1

2
(|𝜙1⟩ + 𝑖|𝜙2⟩) 
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|−⟩|−⟩ =
1

2
(|𝜙0⟩ − |𝜙3⟩) 

 

OK.  Teleportation.  Alice and Bob share a Bell state 

 

|𝜙0⟩ =
1

√2
(|+⟩|+⟩ + |−⟩|−⟩ ) 

 

Alice grabs the state she wants to teleport to Bob. 

 

|𝜓⟩ = 𝛼|+⟩ + 𝛽|−⟩  
 

She interacts her states to form a tensor product   |𝜙0⟩ ⨂ |𝜓⟩ .  The subscripts below track spins 

held by Alice and Bob and,  C , the spins to be teleported.  The tensor product represents the 

whole system:  spins of all three particles, the entangled pair and the state to be teleported.   

 

 

|𝜙0⟩𝐴𝐵 ⨂ |𝜓⟩𝐶 =
1

√2
𝛼(|+⟩𝐴|+⟩𝐶|+⟩𝐵  + |+⟩𝐴|−⟩𝐶|+⟩𝐵  ) 

+
1

√2
𝛽(|−⟩𝐴|+⟩𝐶|−⟩𝐵  + |−⟩𝐴|−⟩𝐶|−⟩𝐵  ) 

 

Well now.  We can identify those leading  𝐴 ⨂ 𝐶  states with Bell bases.   

 

|𝜙0⟩𝐴𝐵 ⨂ |𝜓⟩𝐶 =
1

2
𝛼((|𝜙0⟩ + |𝜙3⟩)𝐴𝐶|+⟩𝐵 + (|𝜙1⟩ − 𝑖|𝜙2⟩)𝐴𝐶|+⟩𝐵 ) 

+
1

2
𝛽((|𝜙1⟩ + 𝑖|𝜙2⟩)𝐴𝐶|−⟩𝐵 + (|𝜙0⟩ − |𝜙3⟩)𝐴𝐶|−⟩𝐵 ) 

 

Regroup that last equation as factors of the Bell bases.   

 

|𝜙0⟩𝐴𝐵 ⨂ |𝜓⟩𝐶 =
1

2
|𝜙0⟩𝐴𝐶

(𝛼|+⟩𝐵 + 𝛽|−⟩𝐵 ) +
1

2
|𝜙1⟩𝐴𝐶

(𝛼|−⟩𝐵 + 𝛽|+⟩𝐵 ) 

+
1

2
𝑖|𝜙2⟩𝐴𝐶

(𝛼|−⟩𝐵 − 𝛽|+⟩𝐵 ) +
1

2
|𝜙3⟩𝐴𝐶

(𝛼|+⟩𝐵 − 𝛽|−⟩𝐵 ) 

 

Now look at that!  Each term on the right is the  AC  Bell state times the associated spin operator 

(reflected in the signs; look close) on  |𝜓⟩𝐵 .  Alice has teleported  |𝜓⟩  to  B !  All Bob has to do 

is operate on his state with the appropriate spin operator.  Alice has to send him that information, 

which operator.  Done! 

 

|𝜙0⟩𝐴𝐵 ⨂ |𝜓⟩𝐶 =
1

2
∑|𝜙𝑗⟩ ⨂ 𝜎𝑗

3

𝑗=0

|𝜓⟩𝐵 
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Be sure to check Nielsen’s quantum circuit for comparison.  I think I finally see where that 

circuit comes from.   

 

On to EPR and the Bell inequality.  Zwiebach presents the argument really nicely.  I’ve been 

confused about what is local realism and other such truck.  Turns out it’s right there in the two 

assumptions Einstein insists on: 

 

1. Any measurement reflects a reality of the system.  i.e., if your measurement determines 

that a particle has spin up, then that particle most definitely had spin up before the 

measurement.  QM, of course, says that the particle was in a superposition of states 

before the measurement. 

2. Conditions far away cannot affect measurements right here in the lab.  QM, on the other 

hand, says particles can be entangled, i.e. correlated, over vast distances.   

 

Bell’s inequality established what’s what.  It’s straightforward in Zwiebach’s presentation.  Key 

is that for a spin system the probability of measuring that spin lies along some axis at angle theta 

from the reference axis  

 

𝑃 =
1

2
𝑠𝑖𝑛2

𝜃

2
 

 

Check the math.  Maybe it’s in Adams’ notes a while back.  But I’m pretty sure I verified this 

myself.   

 

OK.  Here’s Professor Z’s argument.  Consider an experimental apparatus that can measure 

particle spin along any of three axes.  Prepare entangled pairs.  The table below lists all the 

possible entangled states.  +  and − ′𝑠  are spins along the three axes  𝑎, 𝑏, 𝑐 .  Columns list the 

measurement outcomes.  State labels are arbitrary, just a counting device.   

 

state particle A particle B 

𝑁1 + + + − − − 

𝑁2 + + − − − + 

𝑁3 + − + − + − 

𝑁4 + − − − + + 

𝑁5 − + + + − − 

𝑁6 − + − + − + 

𝑁7 − − + + + − 

𝑁8 − − − + + + 

 

Figure the classical probabilities, what EPR predicted assuming local realism.  Calculations list 

spin state for particle A followed by state for particle B. 

 

𝑎(+)𝑏(+) = 𝑁3 + 𝑁4 
 

𝑎(+)𝑐(+) = 𝑁2 + 𝑁4 
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𝑏(+)𝑐(+) = 𝑁2 + 𝑁6 
 

From those equations, it’s clear that 

 

𝑃[𝑎(+)𝑐(+)] ≤ 𝑃[𝑎(+)𝑏(+)] + 𝑃[𝑏(+)𝑐(+)] 
 

That’s the classical prediction according to EPR.  But QM says it ain’t so!  Suppose the angles 

between axes are small and the  b  axis lies between  a  and  c .   

 
Figure.  Experimental test of the Bell inequality.  Alice and Bob independently measure spin 
orientation of their particle from an entangled pair.  Bell inequality is obviously violated at small 
angle differences between the two measuring apparatus.   
 

 

Those probabilities are 

 
1

2
𝑠𝑖𝑛2𝜃  ? ≤  

1

2
𝑠𝑖𝑛2

𝜃

2
 + 

1

2
𝑠𝑖𝑛2

𝜃

2
= 𝑠𝑖𝑛2

𝜃

2
 

 

Not so!  At small angles 

 
1

2
𝑠𝑖𝑛2𝜃 ≅

1

2
𝜃2 ≥

1

4
𝜃2 
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That’s the QM prediction.  Alain Aspect and many others have carried out the experiments.  QM 

wins.   

 

 

Lectures 21-23:  Angular momentum 

 

There’s a whole lot of really dense definitions and proofs here.  Main point is to develop angular 

momentum operators, general  𝐽′𝑠  that include all the maths of orbital angular momentum, spin, 

and everything.   

 

Main point, after a lot of work (which I really need to figure out sometime) is 

 

[𝐽𝑖 , 𝐽𝑗] = 𝑖ℏ 𝜀𝑖𝑗𝑘 𝐽𝑘 

 

Quantized.  And note that  ℏ  has units of angular momentum.  Like  𝑥 ∙ 𝑝  and  𝐸 ∙ 𝑡 .  Think 

about those relations.  Make them all operators.  𝑥̂ ∙ 𝑝̂   is obvious; that’s the classical angular 

momentum.   𝐸̂ ∙ 𝑡̂  needs some more thinking.   

 

Anyway, after all the maths gymnastics we end up with a Hamiltonian for a spin in a central 

potential.  Like an electron in the electromagnetic potential of its nucleus.   

 

𝐻 =
ℏ2

2𝑚
 
1

𝑟
 
𝜕2

𝜕𝑟2
𝑟 −

ℏ2

2𝑚𝑟2
(

1

sin 𝜃
 
𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃
+

1

sin2 𝜃
 
𝜕2

𝜕2𝜙
) + 𝑉(𝑟) 

 

Note all those accelerations along the radial and angular directions.  That seems a quick 

shorthand to think about it, anyway.   

 

From that Hamiltonian you can show that the energy is quantized with quantum numbers  j  in 

increments of  
1

2
ℏ  components along the  𝑧-axis and total momentum between  ∓𝑗 .  I think that 

about captures it.   

 

The generalized wavefunction, with all the angular and radial terms collected into  Y  and  u  

operators (via algebra to combine all the messy coefficients)  

 

𝜓𝐸𝑙𝑚 =
𝑢𝐸𝑙(𝑟)

𝑟̂
+ 𝑌𝑙𝑚(𝜃, 𝜌) 

 

𝜌  is a function of radial distance.  The wavefunction depends on radial distance and spherical 

angle.  There’s just a whole lot of calculation goes into figuring those.  From that we get the 

Hamiltonian 

 

−
ℏ2

2𝑚

𝜕2

𝜕𝑟2
𝑢𝐸(𝑟) + 𝑉𝑒𝑓𝑓𝑢𝐸𝑙 = 𝐸𝑢𝐸𝑙 

 

where the effective potential includes a term for centrifugal force 
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𝑉𝑒𝑓𝑓 = 𝑉(𝑟) −
ℏ2𝑙(𝑙 + 1)

2𝑚𝑟2
 

 

Take-home from all this – Zwiebach’s words – is summarized in the graph for orbital angular 

momentum.  Note we’re talking orbital  L   here, not spin, so energy levels are unit quantized and 

not half-integer.  Beyond the  𝑙𝑖0  (𝑖𝑡ℎ  energy level with zero angular momentum, as in  

𝑠1, 𝑠2, 𝑠3,  etc. orbitals) the states are degenerate.  So, for example, there are three states at each  

𝑙𝑖1 , one for each of the three  𝑙𝑧  and with components labeled by  m  in the algebra.  (Note that 

there are  𝑚 = 2𝑙 + 1  𝑧-components of angular momentum.  See why?)   

 

 
Take a look here how the spectrum is higgledy-piggledy, not nice and neat like the QHO 

spectrum below or the Hydrogen spectrum.   

 

Interesting also is that calculating the wavefunctions on a 2-d surface requires 3-d angular 

momentum.  In fact, the  𝐿𝑥𝑦𝑧  operators emerge naturally from the algebra.  (Don’t ask me to 

demonstrate that right off.  Check out the lecture notes.) 

 

What do those wavefunctions look like?  3-d angular momentum?  Well, they’re Bessel 

functions.  Those are the 3-d standing waves, e.g. representing the modes of vibration of our Mr. 

Sun.  Below is a vibrating membrane, but you get the idea. 
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Figure: Vibrating drum Bessel function.  Credit Slawomir Bialy.  Bessel Function.  Wikipedia.   
 

Turns out wavefunctions in a uniform spherical potential well are a mess, no pattern.  But the 

spectrum of a 3d quantum harmonic oscillator is nice and tidy.  Here’s the algebra.  Hamiltonian 

has the same form expressed in 3d.  Then it’s all numerology. 

 

𝐻 =
𝑝̂2

2𝑚
−

1

2
𝑚𝜔2𝑟̂2 

 

We build the spectrum of the 3d QHO like we did the 1d oscillator but with two more sets of 

ladder operators.  And, note this, those operators form entangled states.  The states in the QHO 

are tensor products.  That’s interesting; before we were entangling particles.  Now we’re 

entangling operators. 

 

Start at the ground state, no angular momentum.  |𝜓⟩ = |0⟩ .  In 3d that has energy  
3

2
ℏ𝜔 .  Now 

spin it up to one unit of angular momentum.  There are three possible spin states,  𝑎𝑥
†|0⟩,  

𝑎𝑦
†|0⟩, and 𝑎𝑧

†|0⟩ all with  𝑙1 .   Degenerate in energy  
5

2
ℏ𝜔 . 

 

𝑙2 gets trickier.  Six possible states, combinations of the creation operators adding to two units of 

half-spin.   

 

𝑎𝑥
†𝑎𝑥

†|0⟩, 𝑎𝑥
†𝑎𝑦

†|0⟩, 𝑎𝑦
†𝑎𝑦

†|0⟩, 𝑎𝑦
†𝑎𝑧

†|0⟩, 𝑎𝑧
†𝑎𝑧

†|0⟩, 𝑎𝑥
†𝑎𝑧

†|0⟩  



63 

 

 

Well now.  There’s a problem.  Six states totals energy  
6

2
ℏ𝜔 .  Ain’t no such energy on the 

spectrum.  We’ve got to split that degeneracy.  Solution is five  𝑙2  states and one  𝑙0 all at  

𝐸 =
7

2
ℏ𝜔 .  Onward and you get a spectrum that looks like   

 

 
But hold on here.  We built those six states in  𝑙2 .  How did we end up with a state in  𝑙0 ?  The 

answer (I think – Prof. Z. didn’t address this directly) is entanglement.  Entangle all those  𝑙2  

states and you get an isotropic system among them.  It’s spherically symmetric, no preferred 

direction.   

 

On then to the hydrogen spectrum.  With all these tools available it’s simple!  I’d assumed H 

would be a colossal maths challenge.  Not so!  It all spills out of the Hamiltonian of a central 

electric potential.     

 

𝐻 =
𝑝̂2

2𝑚
−

𝑒2

𝑟̂
=

ℏ̂2

2𝑚𝑟̂2
−

𝑒2

𝑟̂
 

 

We can solve for the Bohr radius immediately.  Set the potential and kinetic energies equal.  

Solve for radial distance. 
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𝑎0 =
ℏ̂2

2𝑚𝑒2
 

 

Use that to solve the ground state energy:  plug  𝑎0  into the potential, then ladder up the energy 

spectrum with the angular momentum operators!  Same drill.   

 

𝐸𝑛𝑙 = −
𝑒2

2𝑎0
 
1

𝑛2
 

 

Surprising is how neat and tidy is the hydrogen spectrum.  All kinds of degeneracy.  You can see 

all the orbitals right there in the spectrum.   

 
Lecture 24:  Intro to perturbation theory 

 

Here’s interesting:  the Feynman-Hellman theory.  RPF figured it out as an undergrad.   

 

Idea is that if you know the state of a system and you tickle it, say, with an extra potential you 

can add the perturbation to the operators on the initial state and get a close approximation to the 

perturbed state.  Zwiebach’s example here is fine splitting in the hydrogen spectrum due to the 

magnetic moment of the electron.   

 

Feynman-Hellman says 
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𝜕𝐸(𝜆)

𝜕𝜆
= ⟨𝜓(𝜆)|

𝜕𝐻̂(𝜆)

𝜕𝜆
|𝜓(𝜆)⟩ 

 

where  𝜆 is the perturbation of the magnetic moment.  Simple enough, and it makes sense.  You 

can check it out with the bra and ket algebra.   

 

Now suppose  𝐻̂𝑛𝑒𝑤 = 𝐻̂0 +
𝜕𝐻̂(𝜆)

𝜕𝜆
𝑑𝜆 = 𝐻̂0 + 𝜆𝐻̂0  .  In the case of fine splitting, all we have to 

calculate is that second term.  It’s the change in energy due to interaction of spin orbital 

momentum with the magnetic moment of the electron.  That’s what we’ll add as a perturbation.   

 

𝑉(𝐿 ∙ 𝑆) = −
ℏ2

2𝑚𝑐2
𝐿̂ ∙ 𝑆̂ 

 

where the orbital  L  and spin operators can be calculated from our previous calculations of the 

orbital radius and the fine structure constant.  Not bad!   

 

 

Lecture 24:  Spin-orbit coupling 

 

Question is:  what happens when the system includes multiple components.  For example, the 

hydrogen atom has a central potential, the electromagnetic field anchored on the proton, plus the 

magnetic moment of the electron in that field.  The motion of the electron induces a magnetic 

field, and  𝜇𝑒  interacts with that field.  That’s the perturbation conditions introduced above.  

Now take a look at the states and their energies.   

 

Represent the possible  |𝑙, 𝑚⟩  orbital angular momentum states.  l  is total angular momentum; m 

is the  𝑧  component.  There are three possible states for  𝑙 = 1 . 

 

|1, 1⟩, |1, 0⟩, and |1, −1⟩ 
 

And there are two possible electron spin states. 

 

|
1

2
,
1

2
⟩  and |

1

2
, −

1

2
⟩ 

 

Altogether, then, there are six possible spin-orbital terms in the Hamiltonian. 

 

|1, 1⟩ ⨂ |
1

2
,
1

2
⟩ 

 

|1, 1⟩ ⨂ |
1

2
,−

1

2
⟩ 

 

|1, 0⟩ ⨂ |
1

2
,
1

2
⟩ 
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|1, 0⟩ ⨂ |
1

2
,−

1

2
⟩ 

 

|1, −1⟩ ⨂ |
1

2
,
1

2
⟩ 

 

|1, −1⟩ ⨂ |
1

2
,−

1

2
⟩ 

 

The top and bottom states have energy  
3

2
ℏ𝜔 .  The middle four form a degenerate multiplet with 

energy  
1

2
ℏ𝜔 . 

 

It’s all wavefunctions, but we can see the picture in a cartoon. 

 
Figure.  Spin-orbit angular momentum.  Depending on magnetic moments of the nucleus and 
electron, relative orientation of spin and orbital angular momentum split the spectrum into fine 
and hyperfine spectra.   
 

Lecture 26:  The hydrogen spectrum 

 

Done!  Last of the lectures!  And what a great lecture series!  Prof. Zwiebach and his assistants 

do a marvelous job presenting the quantum mechanics.   
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Can I do the calculations?  No, not well.  I need to really sit down and practice.  Do the problem 

sets.  Do the exams.   

 

But I think I have a whole lot better understanding of the concepts.  I learned tons about vector 

spaces and operators.  I learned tons about wavefunctions and about Hamiltonians and complete 

sets of commuting operators.  Tons.   

 

The hydrogen spectrum requires a bunch of vector algebra.  Blackboard after blackboard of 

equations.  What it all comes down to, I think is: 

 

1. Look at those 3d Bessel functions.  In them you can see the angular momentum, total and 

𝑧-component. 

2. Include the additional angular momentum from the Runge-Lenz vector.   

 

 
 

Runge-Lenz  𝑅⃗   points along the major axis of an ellipse.  It has constant magnitude, depending 

on  𝑝̂.   If the orbital is precessing, as in the presence of the orbital  B  field, then that precession, 

captured by Runge-Lenz, contributes to total angular momentum.   

 

Suppose the electron has an orbital angular momentum  𝐿̂  and spin  𝑆̂ with total  𝐽 = 𝐿̂ + 𝑆̂  .  

Now suppose the whole system is precessing, major axis of the atom revolving around the 

nucleus.  We have to include those effects, the precession, in calculations of angular momentum.  

That takes the form  𝑅̂ × 𝐽 .  There’s a whole bunch of commutation relations in there, and it all 

shows up in the spectrum.   

 

Meantime I’m off to do taxes and get ready for a Grand Canyon trip.  Hasta luego! 
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Epilogue 

 

Grand Canyon has been postponed because of CoVid-19.  School and community life, all have 

been postponed.   

 

But there’s still quantum mechanics to learn.  I’m embarking on Scott Aaronson’s lectures for 

quantum computing.  Hasta hasta luego!    


